Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

https://pepy.tech/badge/torchvision https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

We recommend Anaconda as Python package management system. Please refer to pytorch.org for the detail of PyTorch (torch) installation. The following is the corresponding torchvision versions and supported Python versions.

torch

torchvision

python

main / nightly

main / nightly

>=3.6, <=3.9

1.9.0

0.10.0

>=3.6, <=3.9

1.8.1

0.9.1

>=3.6, <=3.9

1.8.0

0.9.0

>=3.6, <=3.9

1.7.1

0.8.2

>=3.6, <=3.9

1.7.0

0.8.1

>=3.6, <=3.8

1.7.0

0.8.0

>=3.6, <=3.8

1.6.0

0.7.0

>=3.6, <=3.8

1.5.1

0.6.1

>=3.5, <=3.8

1.5.0

0.6.0

>=3.5, <=3.8

1.4.0

0.5.0

==2.7, >=3.5, <=3.8

1.3.1

0.4.2

==2.7, >=3.5, <=3.7

1.3.0

0.4.1

==2.7, >=3.5, <=3.7

1.2.0

0.4.0

==2.7, >=3.5, <=3.7

1.1.0

0.3.0

==2.7, >=3.5, <=3.7

<=1.0.1

0.2.2

==2.7, >=3.5, <=3.7

Anaconda:

conda install torchvision -c pytorch

pip:

pip install torchvision

From source:

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

In case building TorchVision from source fails, install the nightly version of PyTorch following the linked guide on the contributing page and retry the install.

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It’s possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Image Backend

Torchvision currently supports the following image backends:

  • Pillow (default)

  • Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.

  • accimage - if installed can be activated by calling torchvision.set_image_backend('accimage')

  • libpng - can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions.

  • libjpeg - can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. libjpeg-turbo can be used as well.

Notes: libpng and libjpeg must be available at compilation time in order to be available. Make sure that it is available on the standard library locations, otherwise, add the include and library paths in the environment variables TORCHVISION_INCLUDE and TORCHVISION_LIBRARY, respectively.

Video Backend

Torchvision currently supports the following video backends:

  • [pyav](https://github.com/PyAV-Org/PyAV) (default) - Pythonic binding for ffmpeg libraries.

  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn’t be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.

conda install -c conda-forge ffmpeg
python setup.py install

Using the models on C++

TorchVision provides an example project for how to use the models on C++ using JIT Script.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

TorchVision Operators

In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you #include <torchvision/vision.h> in your project.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.

If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.11.2-cp39-cp39-win_amd64.whl (985.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.11.2-cp39-cp39-manylinux2014_aarch64.whl (614.0 kB view details)

Uploaded CPython 3.9

torchvision-0.11.2-cp39-cp39-manylinux1_x86_64.whl (23.2 MB view details)

Uploaded CPython 3.9

torchvision-0.11.2-cp39-cp39-macosx_11_0_arm64.whl (552.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchvision-0.11.2-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

torchvision-0.11.2-cp38-cp38-win_amd64.whl (985.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

torchvision-0.11.2-cp38-cp38-manylinux1_x86_64.whl (23.3 MB view details)

Uploaded CPython 3.8

torchvision-0.11.2-cp38-cp38-macosx_11_0_arm64.whl (597.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchvision-0.11.2-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

torchvision-0.11.2-cp37-cp37m-win_amd64.whl (985.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

torchvision-0.11.2-cp37-cp37m-manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.7m

torchvision-0.11.2-cp37-cp37m-manylinux1_x86_64.whl (23.3 MB view details)

Uploaded CPython 3.7m

torchvision-0.11.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

torchvision-0.11.2-cp36-cp36m-win_amd64.whl (985.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

torchvision-0.11.2-cp36-cp36m-manylinux2014_aarch64.whl (14.7 MB view details)

Uploaded CPython 3.6m

torchvision-0.11.2-cp36-cp36m-manylinux1_x86_64.whl (23.3 MB view details)

Uploaded CPython 3.6m

torchvision-0.11.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file torchvision-0.11.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 985.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b78b753b01c19f60bf4df078d245609ed6df9265a127d9fbc2ca202409779cda
MD5 5a3a2832fc85d1ed116e366b543e42b2
BLAKE2b-256 3aadbfe05d5c85e8fcc343b15acc2bb365e7af01d39ba8b6adf680356bac72e7

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 614.0 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3315176f2ee887dcb9d4ada02d103bad837ba065c84d992dce0dbf9dae9ad43c
MD5 1c1987f0e99a82a4d6009f986ca6a84f
BLAKE2b-256 3c11a90c538b557abd33955c961f7bc230a2b6d4ef24ecb9e1d2a7a6d479d307

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 23.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bc6b125134278d8b59682a3693bbf99a1eac6306f0eb71314333010d28392a83
MD5 64b4b5072c281b1246b84a2c5d24148e
BLAKE2b-256 928bcbbcf8e055b074ea55ae07d1f3d8fb2888d47f2944ee5ea286243d4d2ba2

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 552.3 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for torchvision-0.11.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb479be61a28fcff71b1e3ec823641cd75d61229bedab1e83659e3df53ca0159
MD5 9d0fa036d56fa2c521f959ef240a006f
BLAKE2b-256 088bae35ded85a6bf8d79583dad7f62f507ed3cd6637cd0944a10e2569f6e0b3

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63d6f46e083f00ad7ce09d355eb94f512bf41899630240c6c865ca0d9d00718c
MD5 3b46f4dab527941397ff415a10b7b7d8
BLAKE2b-256 73f2b360ddc86b4b0e10750f1dcf95542c978f6a7893220af245a8e04a0d5664

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 985.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 27f0d9088c76edfa3c1f1dcaf965f102437c049f13b599ef02abe99f4d346cb6
MD5 f6ebf9bb28b981a4a9c508552be88127
BLAKE2b-256 f472e8011d274951d2ec3155b079b97fc61c2c8a293061dda9b327552b9d32f7

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecf3f8f8e548dd7b36c5abca03563a32a6d5cb7e97ceec012df1b6380ed5d4c3
MD5 ef7775824b82df966ce53cfd0f6c0396
BLAKE2b-256 3d125c4b99fb9831d47520ba08de93c10e8de9c0514f4156a420b6fde9276ae0

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 23.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82431c4cf9cce36d6ec5f338b4cc5b96732a4becb359588bbc72fba282d3cfff
MD5 af11857304ca554b8d8f67fd6a603b93
BLAKE2b-256 36c64f850a3848b2c863ebe8abd3dfa6b58fdc84544a244fb96e2446b60bf7ec

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 597.5 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for torchvision-0.11.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3abcfab98dea4bc1e512e99c5b56e66e237bd65569e1c9b1c3c2d459ef50795c
MD5 2b0d56175b38f0ea63328033bbbfe4d3
BLAKE2b-256 6feb67ad3c5796753a7e9928c3329427b59fb879a1a24e0bea8624ee59638820

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 52b14ce23a6e0a5a1309970888a1febb12e93fe6aed78df8aa115f1cf2019cc6
MD5 e3c3564caba31418121329d58a621482
BLAKE2b-256 0829f8ff498296dc8d2bc8c51c07fc8f3a069cd188c7c4ba343cb1118869b328

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 985.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d2aa1e253c9ddcf728a2dc6e771ebaf3201798cf91304cd352795a34daefce51
MD5 b2dd0d8256fe7d82d68710650ec86504
BLAKE2b-256 5fcf7100087a34cc1a4fd6aa492edd2fe7c51c6773bad6473bc2551c427834cb

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe1395b5fe3b5f2111312a8c75dd48176db7b9f129e1f4159bf1fb2aeec54778
MD5 5bdcdc84277fb03d95f7252301700ee4
BLAKE2b-256 18023da9c183a5ff153014a86b4c8ed6dd4f7ac4fe4e429729c534b3823ae44a

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 23.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 32cca2b5e0696f59e03c1261444deb81c87c6967d444aaf2d156f3023e741ffe
MD5 5ba58ae3a07a7515ec5fa283d62838e4
BLAKE2b-256 8cf73e3875ce0155d9a2acf9911bc80679bdccfa81cc6f3c83fec7c2b267f46a

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3091e5d3131e0664ca817ef32eff0ec5f79e2f0d61b447ae63bdd2429aff179c
MD5 67144ecaca99ccc051ab0752ed8c8c1b
BLAKE2b-256 7f02de14c5b6bae9d407a9aa4fffff001fc68b2066e7787e232069649b70ddcc

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 985.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6d84490010761a34d6238987f88f8bccec06914431fc13c221902ea4f54ecb43
MD5 200d367f7637b10657fc22a566fbbf68
BLAKE2b-256 f4cb989e29a5e0f74a72e0f919587bb80e36647a60309fc39183e732b9c5bd12

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12eb97a2b87661914c2a6743ec535b432194b3a17620217cab201733e63d0a8f
MD5 8d11524aeda107988a1f169b2a408356
BLAKE2b-256 9e813f93005f4b5815cb5e4938c3ad267c6542ff40e69c683a09e2e042107976

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 23.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a33c4e5c8456d3cdbb706636f209f318c8544be0f08179056296765db95b981b
MD5 ebc759c805bf406a3f30b484a48da27f
BLAKE2b-256 3803c963ecdf98fae15286437ae533750e2c39e988b7d8c86fad4dbc73a3a146

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.11.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: torchvision-0.11.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.1

File hashes

Hashes for torchvision-0.11.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f52745f652fe82e962e3399ac19f5ce7fe42e2b6bf73ef24f4aa1f222bbbfca
MD5 093f60ab444af09ab17e480ce63d8259
BLAKE2b-256 08691b6ce41f626c87e839014e4be04bf2d007ec13b9aff7b8a90eddb5abf412

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page