Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

Please refer to the official instructions to install the stable versions of torch and torchvision on your system.

To build source, refer to our contributing page.

The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.8, <=3.12
2.3 0.18 >=3.8, <=3.12
2.2 0.17 >=3.8, <=3.11
2.1 0.16 >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
older versions
torch torchvision Python
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

Image Backends

Torchvision currently supports the following image backends:

  • torch tensors
  • PIL images:

Read more in in our docs.

[UNSTABLE] Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install

Using the models on C++

Refer to example/cpp.

DISCLAIMER: the libtorchvision library includes the torchvision custom ops as well as most of the C++ torchvision APIs. Those APIs do not come with any backward-compatibility guarantees and may change from one version to the next. Only the Python APIs are stable and with backward-compatibility guarantees. So, if you need stability within a C++ environment, your best bet is to export the Python APIs via torchscript.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.19.0-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchvision-0.19.0-cp312-cp312-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.12

torchvision-0.19.0-cp312-cp312-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchvision-0.19.0-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchvision-0.19.0-cp311-cp311-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11

torchvision-0.19.0-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchvision-0.19.0-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchvision-0.19.0-cp310-cp310-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.10

torchvision-0.19.0-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchvision-0.19.0-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.19.0-cp39-cp39-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9

torchvision-0.19.0-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchvision-0.19.0-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchvision-0.19.0-cp38-cp38-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8

torchvision-0.19.0-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchvision-0.19.0-1-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchvision-0.19.0-1-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchvision-0.19.0-1-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchvision-0.19.0-1-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.19.0-1-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file torchvision-0.19.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a6ba7756f75c80212e51d3576f85ea204589e0c16efdb9b835dd677bc8929a67
MD5 e149cc2a16ddd3efe70b2c8ea4ce26db
BLAKE2b-256 2f3c88471e60b3eb275f52acb2b1d43273c54323003642a75b7b4eeb3a7c4c2a

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be0f27a28b8e9f2ae98a31af34a4bdd2a5bf154d92bd73a5797c8d2156fb3ab6
MD5 d38631b0f381121f3f6a305481b645a1
BLAKE2b-256 2fd6e8bf6e422cd5f8491072bdc03a6fb8c758bd517f0f4e82b537edd7d7bbdc

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 02f1dd5cfc897957535b41b0258ec452d30de044e20c2de2c75869f7708e7656
MD5 75d0fcc4f3d7532202f984e8fe9ad79e
BLAKE2b-256 0da67ecba32776b22db475f3061ab2b997b3a9bda6d969ef8e4bc61aac9b78b0

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c09ef8ed184fa877f6251b620226e74f682b8f1d6b341456428d4955b8d9c670
MD5 0943120c68a9ed708155e6eaaa0f637f
BLAKE2b-256 886f53f55c7e390e1fd27d24fdfa36bcb6f717855f311fbea90a15a1fbdef9d4

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ac5525d5cc09e425b5cf5752ecf66eefbbbd8c8cd945198ce35eb01a694e6069
MD5 3b29b747abee82d4457dd80ae36e08ad
BLAKE2b-256 e406458d0d1495a1926729c575d7ebca956e959cfe59fa307e93d585d26aa41d

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e6aa4fa3f0bc3599fa071c149e651a3e6bdd67c9161794478f9f91471c406a2
MD5 13697e1e0607b971d4b3bb81622fcd10
BLAKE2b-256 6e69a6bfb1af58d6c608d77f1d53fe5102c5fb6f27e9de8a4d3f3e1ba9a7250a

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ec4162dc71d9db7f0b51d0f92491929c1419605ff436e1305e50de13504a1c30
MD5 5e9b54cb64de06c5c9b11689fd668a6d
BLAKE2b-256 421defde76f826682ebe6ec97c2874f3c7e4833eb84497c521ce6cfac406ef34

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbf3aa71a3899244fc884303ed3c4604a160824fefac77e82317a5463efc1d9b
MD5 29e70a0ed3a707f79f90377bc636eee9
BLAKE2b-256 b493611197d5a023a33a48df656287b3e26c6e7db0fa92a9bb2259c0cdb76581

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f77ac31f7337d0f6f4b58e65582c6c93b9d9eeec7dfd7478896b5cdc19a2d60d
MD5 ce256ad374b01fabf028e91c651c9846
BLAKE2b-256 6a7d45dddbed62d282a8041ec5744d87ea6847be12ffd1ffe8ea5f3cf3afd257

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d467d434005fd05a227a2ba7af4c591bb67e6d4a97bbd06eda8da83f43e9fd07
MD5 b850d7398327e98c156c745a0df043fd
BLAKE2b-256 205f9bc7c6bbaf2b348474a360bffe135666892aa234946957e85cd198d815c4

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 106842b1e475b14d9a04ee0d6f5477d43100e3bb78e9d31e37422384d0d84179
MD5 f2f8e9fd2217794dadb65036cc89f7db
BLAKE2b-256 42c224b4416c53445098221557e18de0de59539cbe56b580b13a4f079746f3eb

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec874ef85dcb24c69e600f6e276af892c80cde3ffdaeb7275efda463242bc2a8
MD5 feef72db70ef405203919178cfa55325
BLAKE2b-256 66119f5ce2d6cfb55bdb18bfae6f7604f9bdc41586bed2d90ca50412a689ecba

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ec1281c10402234d470bfd4d53663d81f4364f293b2f8fe24d4a7a1adc78c90c
MD5 446f42c5d70e3fc4f9b79ac9311b18ec
BLAKE2b-256 8bcd57498a8469cfaf256c13a7043e6059b28fa20d0d31734aec788d2af3642d

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f9a598dcf82bdfc8e4436ce74763b3877dabec3b33f94613b94ede13e3e4dee
MD5 df2ff149df40296242fc8ed27411127b
BLAKE2b-256 4fb8a7c7e5321483c56d3bff82a759dd3b4439d1234fa5852fb2ef113d33874e

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4d54b5e19b7ebebca7d0b08497b4c6335264cad04c94c05fa35988d9e9eed0c4
MD5 fc507c28691e9df444288d47905b99ce
BLAKE2b-256 4d1b2c34793ce68075e92ad515739bf2a2608055274b7f5838de32baad7f6f51

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dd1279571d4b68d5a53d9b7a35aedf91c4cb1e0b08099f6a1effa7b25b8c95e7
MD5 8ef05c9eb28de6b86e3bdf8e9d1cf9ea
BLAKE2b-256 5a37848b25931a8dfcda0b8e51e92696fa8eb99cb743172cc875c822efaf9b42

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 aaa338ff3a55a8c0f94e0e64eff6fe2af1fc933a95fd43812760e72ea66e986b
MD5 d768de892197dc38d94c2d62c4e9b3c9
BLAKE2b-256 58790e7879ec550718a2987651b2efe14ab2fc0eb5fcb8286c108e4700474500

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 079a696e0b2cb52e4be30afa8e9b3d7d280f02a2b5ffedd7e821fa1efd1a5a8d
MD5 d78d0f7c0ece70bfbc43e1d08ba6e7de
BLAKE2b-256 719e1ab363824dec798d76635f63be0067d822ca6803990761870d2be42760d1

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d9afb8a3c3ce99a161a64c2a3b91cb545632a72118053cbfb84e87a02a8dcd02
MD5 e09002319f1fc8d75f4eecd7b23c2891
BLAKE2b-256 c0090c3d0542e864ca1b74f98d3099a338059633aead458a36c0a341f8ee90c2

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 854e967a16a9409e941b5bbe5aa357b23f7158bccb9de35ae20fd4945f05ecd1
MD5 4687429a19628180323fae80e495f91f
BLAKE2b-256 5bcc7fd0a10c7e2045073a31ae2d77ea8f1b786249fb8b35ac643b3c426fed53

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 13aee7a46e049c8c1e7d35a0394b0587a7e62ff3d1a822cd2bbbacb675ac4a09
MD5 77e92f19b99457424e901b2ee0af39bb
BLAKE2b-256 a5964496817e943141a8a76bbed5c45a0fe30d356b69030e4b482c915717e3b9

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6b1bce2e4c003d890a18f14ff289528707d918e38539ff890ef02aa31dae1b56
MD5 55a61e004bd0694eb4521cbe48612e88
BLAKE2b-256 6a38e8257ad99ea2ec30bbb4e6d9d81f3fe796e39046bb060d80569cbf6d83e5

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6ed066aae5c50465d7c4761357aefe5dbd2eb7075a33ab8c14b352fc2353ad4c
MD5 13a7b69b3e1c3a90df4222b546ce2b2a
BLAKE2b-256 e8a34c868202fa23f69f9a58bb29ecbae5f9912c5d79fa5e78db5d3de7e6434f

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b5f70f5a8bd9c8b00a076bf466b39b5cd679ef62587c47cc048adb04d9c5f155
MD5 2f31677f9db88b8c6e15c1c80eff2b6f
BLAKE2b-256 8c658da2b47c789acee2b48b33cd7c1b06b6eb45106854d42ed43269a84df908

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.0-1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.0-1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2acc436d043d4f81b3bc6929cbfa4ef1cdae4d8a0b04ec72ec30a497e9a38179
MD5 d4f1a178e73abb3641e4584737f6fc9e
BLAKE2b-256 85b13a0a52c47d60fb7d72a830b37633610126f4a4bd24ee74ebc93478489fe7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page