Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

Please refer to the official instructions to install the stable versions of torch and torchvision on your system.

To build source, refer to our contributing page.

The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.8, <=3.12
2.3 0.18 >=3.8, <=3.12
2.2 0.17 >=3.8, <=3.11
2.1 0.16 >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
older versions
torch torchvision Python
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

Image Backends

Torchvision currently supports the following image backends:

  • torch tensors
  • PIL images:

Read more in in our docs.

[UNSTABLE] Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install

Using the models on C++

Refer to example/cpp.

DISCLAIMER: the libtorchvision library includes the torchvision custom ops as well as most of the C++ torchvision APIs. Those APIs do not come with any backward-compatibility guarantees and may change from one version to the next. Only the Python APIs are stable and with backward-compatibility guarantees. So, if you need stability within a C++ environment, your best bet is to export the Python APIs via torchscript.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.19.1-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchvision-0.19.1-cp312-cp312-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.12

torchvision-0.19.1-cp312-cp312-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchvision-0.19.1-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchvision-0.19.1-cp311-cp311-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11

torchvision-0.19.1-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchvision-0.19.1-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchvision-0.19.1-cp310-cp310-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.10

torchvision-0.19.1-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchvision-0.19.1-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.19.1-cp39-cp39-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9

torchvision-0.19.1-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchvision-0.19.1-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchvision-0.19.1-cp38-cp38-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8

torchvision-0.19.1-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file torchvision-0.19.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b4283d283675556bb0eae31d29996f53861b17cbdcdf3509e6bc050414ac9289
MD5 69817930eb355ad666e43b578dcc02cb
BLAKE2b-256 6bb2fd577e1622b43cdeb74782a60cea4909f88f471813c215ea7b4e7ea84a74

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c07bf43c2a145d792ecd9d0503d6c73577147ece508d45600d8aac77e4cdfcf9
MD5 7ca4ea4779ad9b4f8d1cba512e9b7604
BLAKE2b-256 dab29da42d67dfc30d9e3b161f7a37f6c7eca86a80e6caef4a9aa11727faa4f5

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c659ff92a61f188a1a7baef2850f3c0b6c85685447453c03d0e645ba8f1dcc1c
MD5 c7031d6ccb8d5c2cdec6c2f963b12179
BLAKE2b-256 8b34fdd2d9e01228a069b28473a7c020bf1812c8ecab8565666feb247659ed30

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27ece277ff0f6cdc7fed0627279c632dcb2e58187da771eca24b0fbcf3f8590d
MD5 412ef956ff56117fb515b310b6c338c4
BLAKE2b-256 a4d0b1029ab95d9219cac2dfc0d835e9ab4cebb01f5cb6b48e736778020fb995

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 70dea324174f5e9981b68e4b7cd524512c106ba64aedef560a86a0bbf2fbf62c
MD5 d12af03b8710b11728b4a7eddf983309
BLAKE2b-256 f869dc769cf54df8e828c0b8957b4521f35178f5bd4cc5b8fbe8a37ffd89a27c

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d71a6a6fe3a5281ca3487d4c56ad4aad20ff70f82f1d7c79bcb6e7b0c2af00c8
MD5 9dfe361dc687403d77fa70d2e4f33a17
BLAKE2b-256 360436e1d35b864f4a7c8f3056a427542b14b3bcdbc66edd36faadee109b86c5

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5a91be061ae5d6d5b95e833b93e57ca4d3c56c5a57444dd15da2e3e7fba96050
MD5 8f842f8d34a8d8516894cc1b5945be8d
BLAKE2b-256 289d40d1b943bbbd02a30d6b4f691d6de37a7e4c92f90bed0f8f47379e90eec6

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 40514282b4896d62765b8e26d7091c32e17c35817d00ec4be2362ea3ba3d1787
MD5 2c7a8e3cfc5eea3d0a32700ff62db96a
BLAKE2b-256 66f6a2f07a3f5385b37c45b8e14448b8610a8618dfad18ea437cb23b4edc50c5

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f40b6acabfa886da1bc3768f47679c61feee6bde90deb979d9f300df8c8a0145
MD5 ca9640d6870d52a3961962e9b82d908f
BLAKE2b-256 f78ecbae11f8046d433881b478afc9e7589a76158124779cbc3a40163ec716bf

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b063116164be52fc6deb4762de7f8c90bfa3a65f8d5caf17f8e2d5aadc75a04
MD5 742478a840c17250864fcbece0b670a0
BLAKE2b-256 db71da0f71c2765feee125b1dc280a6432aa88c510aedf9a36987f3fe7ed05ea

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 20a1f5e02bfdad7714e55fa3fa698347c11d829fa65e11e5a84df07d93350eed
MD5 3b4158a4645cf3e4cdd042aa1c19cdf8
BLAKE2b-256 7255e0b3821c5595a9a2c8ec98d234b4a0d1142d91daac61f007503d3158f857

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54e8513099e6f586356c70f809d34f391af71ad182fe071cc328a28af2c40608
MD5 5c1d912f23c20980e329062dcd6d45f7
BLAKE2b-256 d490cab820b96d4d1a36b088774209d2379cf49eda8210c8fee13552383860b7

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6616f12e00a22e7f3fedbd0fccb0804c05e8fe22871668f10eae65cf3f283614
MD5 93d9b41a8e5f174ae7aa83cb0dbbc696
BLAKE2b-256 b07b2e55c0c613af4df93ef5b9ab8f652226c07b3fb9b0c742ceedcdd6cec2e5

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e328309b8670a2e889b2fe76a1c2744a099c11c984da9a822357bd9debd699a5
MD5 5aca32318a0bd9d31b79918cda704739
BLAKE2b-256 6d1116d63ede75bd1433aa84f1d9156b058b3ed4976749972220a90c13a1df64

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 febe4f14d4afcb47cc861d8be7760ab6a123cd0817f97faf5771488cb6aa90f4
MD5 a68f0a02aefe2825d6f0c5d67baa266e
BLAKE2b-256 c34f67b40e50d5dd1f9200421ab31b17d337162742b4f6676a0f4a917b3acdf1

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 731f434d91586769e255b5d70ed1a4457e0a1394a95f4aacf0e1e7e21f80c098
MD5 e7a4175a46f4d33b6a38a72c9174947f
BLAKE2b-256 61373aff3b9d89b8676f11702840fba7d7ef1d8e91d750426214cc55f6c3fee1

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ccf085ef1824fb9e16f1901285bf89c298c62dfd93267a39e8ee42c71255242f
MD5 a793ee85e86c8a7217be0b9814dcbaa2
BLAKE2b-256 f64e17d3137e893e878d2c165268b3f80d59e306e1ac1e0d89d8cccb27cc1d76

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d10bc9083c4d5fadd7edd7b729700a7be48dab4f62278df3bc73fa48e48a155
MD5 57bd3929afd55aa0e84ff709bed983a7
BLAKE2b-256 9514b7dadde3ef929936e2139aa3f51f078887b6cc8bee702410979b929224e8

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9281d63ead929bb19143731154cd1d8bf0b5e9873dff8578a40e90a6bec3c6fa
MD5 56acd549e9aa8122ef796875b9aca0f2
BLAKE2b-256 ed1574800e103ea652bef9fc572661b74a081e2194700f0f5f4f184918218af6

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.19.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.19.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c4e4f5b24ea6b087b02ed492ab1e21bba3352c4577e2def14248cfc60732338
MD5 35dd3f6734114a9c690aebedd2635846
BLAKE2b-256 5a1a61529a059f89b36543f7749c31630a87f212cdefb8ca9a6dc718dd539efc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page