Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

Please refer to the official instructions to install the stable versions of torch and torchvision on your system.

To build source, refer to our contributing page.

The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.9, <=3.12
2.4 0.19 >=3.8, <=3.12
2.3 0.18 >=3.8, <=3.12
2.2 0.17 >=3.8, <=3.11
2.1 0.16 >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
older versions
torch torchvision Python
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

Image Backends

Torchvision currently supports the following image backends:

  • torch tensors
  • PIL images:

Read more in in our docs.

[UNSTABLE] Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge 'ffmpeg<4.3'
python setup.py install

Using the models on C++

Refer to example/cpp.

DISCLAIMER: the libtorchvision library includes the torchvision custom ops as well as most of the C++ torchvision APIs. Those APIs do not come with any backward-compatibility guarantees and may change from one version to the next. Only the Python APIs are stable and with backward-compatibility guarantees. So, if you need stability within a C++ environment, your best bet is to export the Python APIs via torchscript.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.20.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchvision-0.20.0-cp312-cp312-manylinux1_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.12

torchvision-0.20.0-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchvision-0.20.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchvision-0.20.0-cp311-cp311-manylinux1_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.11

torchvision-0.20.0-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchvision-0.20.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchvision-0.20.0-cp310-cp310-manylinux1_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.10

torchvision-0.20.0-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchvision-0.20.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.20.0-cp39-cp39-manylinux1_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.9

torchvision-0.20.0-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file torchvision-0.20.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bb0da0950d2034a0412c251a3a9117ff9612157f45177d37ba1b20b472c0864b
MD5 d7861e11c9508c62f04e5ba6d04574d4
BLAKE2b-256 9eb4b0247c2a953322e1ac3fe4c31aad4a39530ae5f60128f3cdb760136386e3

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a78c99ebe1a62857b68e97ff9417b92f299f2ee61f009491a114ddad050c493d
MD5 b9a88dab504977eb887b39c93f49ba09
BLAKE2b-256 0b5d6e34beaeb16f4c106d727bb366b1e9e2cb6b97b5e790754f74d766c3650b

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c8f3bc399d9c3e4ba05d74ca6dd5e63fed08ad5c5b302a946c8fcaa56216220f
MD5 4d57ba663a84624c338be93bbfbd4934
BLAKE2b-256 6c4b0627814c10b70b4032b68b454ada67cdec9c28c1d8d0ff54aad66602df9f

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac0edba534fb071b2b03a2fd5cbbf9b7c259896d17a1d0d830b3c5b7dfae0782
MD5 e8f6f814719729b08173d228034ef9c8
BLAKE2b-256 6a67a2b3d9b0804c6d615a228057a2159a724c5fd8a0637414318815c01db5de

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1fd045757335d34969d176fc5688b643d201860cb45b48ce8d5d8fb90868f746
MD5 e7f739417176e9f741a1acebe122b0fc
BLAKE2b-256 b21bb8eb51f87626c125cfa81f07488ab277e68e1c021c6cf2750d779eb61358

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d80eb740810804bac4b8e6b6411946ab286a1ee1d731db36af2f885333254802
MD5 cbee48292dcf5700d0340d557f2749da
BLAKE2b-256 7553461d80e62c30184057a164a24936498be3a89c7ecb0df5c0022395b22f14

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b64d9f83cf201ebda4f6b03533e4918fa0b4223b28b0ee3cbede15b8174c7cbd
MD5 da70ee09ee9cf8f1476f627c2b3eb21e
BLAKE2b-256 abd8bba984473667bc0467110802dc1cfeba158b895327dea35094c21400c0ba

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a15de6266a36bcd10d89f6f3d7ba4e2dd567a7a0add616ebc6e65aea20790e5d
MD5 794e1a17e8c26b8f146effea9990dce7
BLAKE2b-256 6040619a1332a5be516abd801bf0053790fe88f6d1b1757d55dc52743490583c

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a7d46cf096007b7e8df1bddad7375427664a064bc05d9cbff5d506b73c1ab8ca
MD5 e5ed0bf87478854bd6970eb446d9c46b
BLAKE2b-256 29fbcab5ba21b6f3dc082f8bfa1a0d9eda17c643cd410f8514b56ced46cc0470

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09080359be90314fc4fdd64b11a4d231c1999018f19d58bf7764f5e15f8e9fb3
MD5 3322204f608fd4e67d4d2946fae41ab2
BLAKE2b-256 8225b81da3d268c521252ab0cbe60e7a5be244f18dec86277342a3a82e64b496

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9c18208575d60b96e7d53a09c453781afea4a81487c9ebc501dfc2bc88daa308
MD5 3a0ce6e324add2dd6a45d89c291933a4
BLAKE2b-256 194941359c7c1493beefa5cc3c3e4ff036ebc607635574bf6868ac9aae23c1ee

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f164d545965186ffd66014e34a966706d12c84198302dd46748cae45984609a4
MD5 bd7ac6b7f39b7572dc169fe1618d59bd
BLAKE2b-256 e95471eb77dd9e0c43300c69e092e6683c1e02907024cef2992601ecc00d94a1

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 47d0751aeaa7057ee6a5973d35e7acad3ad7c17b8e57a2c4304d13e001e330ae
MD5 40e890fd5eeb8987dea55dab2b752bc5
BLAKE2b-256 05ab336f2e3285dfed7b336c651ff80d22f0c44d6d267f79306cdb3cebf28b8a

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ab53244701eab897e5c65026ba178c0abbc5bd08629c3d20f737d618e9e5a37
MD5 b8b485c8d0e24f4fb9aa1b77c43d6757
BLAKE2b-256 9980966be8930c96b577a0b016d8f76ee92e451cc8a58e429a9c1d7cbf6490e0

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 95d8c817681a4c2156f66ef83cafc4c5c4b97e4694956d54d7dc554804ee510d
MD5 bb3f5d13a0741c35f6a7e05ba3bd2067
BLAKE2b-256 070761a7905f6543ce130538f7efb7198e9fb5f3839465757b30c7d3f20adee4

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6a70c81ea5068dd7b1e340ebeabb65364576d8b9819454cfdf812290cf03e45a
MD5 600709ecc22d3ae54954f5f0e394082b
BLAKE2b-256 6ec5369c031631d0829e5b8630ee238b5774ab9de365bb474174501d71eaf9ea

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f8d0213489acfb138369f2455a6893880c194a8195e381c19f872b277f2654c3
MD5 e8a3165d0ebb9da4a7608abaf7d1ab71
BLAKE2b-256 a893a01ea3787380af4095f1e00d3e1edcf4a442f3e8564a25bd267ae705fdbb

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55d7f43ef912ebc4da4bba73a0bbf387d38a6be9cd521679c0f4056f9564b698
MD5 0b2054b5a357f74d1445ff32b39d37c3
BLAKE2b-256 07575b008609654297564e95dea905f63f8986f1748b959c00f0260af4326f2a

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e084f50ecbdbe7a9cc2fc51ea0367ae35fde46e84a964bf4046cb1c7feb7e3e6
MD5 038582c01495e57d62461fad8be03cfb
BLAKE2b-256 9de6225b1b2ac1aed9ab8682b1d979c165c9ee5ef5642fc488e8b6810f2b7155

See more details on using hashes here.

Provenance

File details

Details for the file torchvision-0.20.0-1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchvision-0.20.0-1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d6cea8ab0bf72ecb71b07cd0fe836eacf5a5fa98f6629d2261212e90977b963
MD5 70e20478e9610718fb996825d1ce7181
BLAKE2b-256 40cda2fae84e61cee28a9db55fefe8e84ad6fa85997318c89d5ca44fb2e48e7b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page