image and video datasets and models for torch deep learning
Project description
torchvision
The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.
Installation
TorchVision requires PyTorch 1.1 or newer.
Anaconda:
conda install torchvision -c pytorch
pip:
pip install torchvision
From source:
python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install
By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It’s possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.
Image Backend
Torchvision currently supports the following image backends:
Pillow (default)
Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.
accimage - if installed can be activated by calling
torchvision.set_image_backend('accimage')
C++ API
TorchVision also offers a C++ API that contains C++ equivalent of python models.
Installation From source:
mkdir build
cd build
cmake ..
make
make install
Documentation
You can find the API documentation on the pytorch website: http://pytorch.org/docs/master/torchvision/
Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for torchvision-0.4.1-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49315de81faa7e874dbcff58d188eb4d7d0327bc9bb630f2da9d7abe79583708 |
|
MD5 | cb1dd7cf1756058c37442027cfa8c664 |
|
BLAKE2b-256 | 783f7e419d248538ae28a6b29819613f8b1f0eeaccc07774267fc23a68d2b8d1 |
Hashes for torchvision-0.4.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7715c602d4ef7d66ae37002ccbf1d341fdafefd3331e2dabc9341483eb0bd2b2 |
|
MD5 | 5c48a15915679d5a93f362dab9cc789b |
|
BLAKE2b-256 | 72b95e22c25a201b80cd599af910200b66872af5f5404a13dc76e9ce1a988bed |
Hashes for torchvision-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60932ebfa4cbcdba707821ea365f7ca89cde679c087e96f947d99035132dbd7e |
|
MD5 | 5e1428781d9f99df2a495dbb4773dddc |
|
BLAKE2b-256 | 974d75e430a8ce3e4707a2de566229c1f5295dab99040b72f5b83f29cc196297 |
Hashes for torchvision-0.4.1-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e54e0f392c3a20206e5f1d09c7eef208e680099c242e4f86b7e51217df812f32 |
|
MD5 | d98d503f4a6a3adf391ab3288929b82b |
|
BLAKE2b-256 | bb306c586561c222b75c13af18beba34e1018150fff8e3cb179d91efe0d2017a |
Hashes for torchvision-0.4.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dd1c29ea41b6f7f12477aaf2e359781023a6e127d9a5642b6e96978b56b13674 |
|
MD5 | 7292b854735570cb8eb33ada0502636b |
|
BLAKE2b-256 | fc23d418c9102d4054d19d57ccf0aca18b7c1c1f34cc0a136760b493f78ddb06 |
Hashes for torchvision-0.4.1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65cbd363ec17a74d47d0e5237c258a98d0cd548e79455a37d9699418f9413512 |
|
MD5 | 6d46442546fd2cbf26e5c7fb1e9f97c6 |
|
BLAKE2b-256 | 8ca687081bb3e9910ba9cb99dbc8d5e34b1b22149e6f04e17779935cdae65664 |
Hashes for torchvision-0.4.1-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c19d3d72987e6c0cbd90e37a80b51f93765c9cbc9954074b6396f8f2ea80a7d4 |
|
MD5 | 533257d90172f960d03ff285932ff887 |
|
BLAKE2b-256 | 9d7360a575dd40d823d33ebae43dff50f42e93b4419b1367ab61c7994d551e07 |
Hashes for torchvision-0.4.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4380da0565bd729338f965b4465367dc35a64bdf9e0654a6ae72cf9bdb46dce7 |
|
MD5 | 44c3da274767940e4b6d7b8b93142003 |
|
BLAKE2b-256 | 382d70e4dd52772bc0a7a17412f50018d3bf712e3da21fd04916f333770ae737 |
Hashes for torchvision-0.4.1-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f8b6acd544fca8642099c921cea590cd711ecd6b30c73a335c10a525421450e |
|
MD5 | f799b1bfd9682327cea0f6799462f917 |
|
BLAKE2b-256 | 1d0d4214fc20ef504299a1a556996e97c30c4166f3446e537642c4f222c14f81 |
Hashes for torchvision-0.4.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 23ded32f6e6b6048f2da7b9a8933d122038d050641e385b8857ef206e0613d3b |
|
MD5 | ddd705e1e68407403b50d9a6f09a8cff |
|
BLAKE2b-256 | e0e40c54caf19f5f10d04ee1f490aa9a47b440588fba1f1ac28f0a21d07b6810 |
Hashes for torchvision-0.4.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 621b49722f97489725660ef0152a447031b21314af67b49a48ee48513f073690 |
|
MD5 | 239a1a791f01e5168b6797432026045e |
|
BLAKE2b-256 | 22b28b3046b706a298f22783baa663603b9515b4f6d8ad617f581521a447f76b |
Hashes for torchvision-0.4.1-cp27-cp27m-macosx_10_7_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b2edd39450c7628e46b53b370a80727aacebfce83458faa4209f6346a39ca845 |
|
MD5 | d6ade7b9bccd147dcddad94b45453ccf |
|
BLAKE2b-256 | fe6d32bb52f2f4a09510eec1d478e778fe7bfa1a00cf1f1e6c413c7ce4a94ae2 |