Skip to main content

image and video datasets and models for torch deep learning

Project description

torchvision

https://codecov.io/gh/pytorch/vision/branch/master/graph/badge.svg https://pepy.tech/badge/torchvision https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

We recommend Anaconda as Python package management system. Please refer to pytorch.org for the detail of PyTorch (torch) installation. The following is the corresponding torchvision versions and supported Python versions.

torch

torchvision

python

master / nightly

master / nightly

>=3.6

1.7.1

0.8.2

>=3.6

1.7.0

0.8.1

>=3.6

1.7.0

0.8.0

>=3.6

1.6.0

0.7.0

>=3.6

1.5.1

0.6.1

>=3.5

1.5.0

0.6.0

>=3.5

1.4.0

0.5.0

==2.7, >=3.5, <=3.8

1.3.1

0.4.2

==2.7, >=3.5, <=3.7

1.3.0

0.4.1

==2.7, >=3.5, <=3.7

1.2.0

0.4.0

==2.7, >=3.5, <=3.7

1.1.0

0.3.0

==2.7, >=3.5, <=3.7

<=1.0.1

0.2.2

==2.7, >=3.5, <=3.7

Anaconda:

conda install torchvision -c pytorch

pip:

pip install torchvision

From source:

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

In case building TorchVision from source fails, install the nightly version of PyTorch following the linked guide on the contributing page and retry the install.

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It’s possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Image Backend

Torchvision currently supports the following image backends:

  • Pillow (default)

  • Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.

  • accimage - if installed can be activated by calling torchvision.set_image_backend('accimage')

  • libpng - can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions.

  • libjpeg - can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. libjpeg-turbo can be used as well.

Notes: libpng and libjpeg must be available at compilation time in order to be available. Make sure that it is available on the standard library locations, otherwise, add the include and library paths in the environment variables TORCHVISION_INCLUDE and TORCHVISION_LIBRARY, respectively.

C++ API

TorchVision also offers a C++ API that contains C++ equivalent of python models.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

TorchVision Operators

In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you #include <torchvision/vision.h> in your project.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/docs/stable/torchvision/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset’s license.

If you’re a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchvision-0.9.1-cp39-cp39-win_amd64.whl (852.4 kB view hashes)

Uploaded CPython 3.9 Windows x86-64

torchvision-0.9.1-cp39-cp39-manylinux2014_aarch64.whl (491.2 kB view hashes)

Uploaded CPython 3.9

torchvision-0.9.1-cp39-cp39-manylinux1_x86_64.whl (17.3 MB view hashes)

Uploaded CPython 3.9

torchvision-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl (13.1 MB view hashes)

Uploaded CPython 3.9 macOS 10.9+ x86-64

torchvision-0.9.1-cp38-cp38-win_amd64.whl (852.4 kB view hashes)

Uploaded CPython 3.8 Windows x86-64

torchvision-0.9.1-cp38-cp38-manylinux2014_aarch64.whl (11.8 MB view hashes)

Uploaded CPython 3.8

torchvision-0.9.1-cp38-cp38-manylinux1_x86_64.whl (17.4 MB view hashes)

Uploaded CPython 3.8

torchvision-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl (13.2 MB view hashes)

Uploaded CPython 3.8 macOS 10.9+ x86-64

torchvision-0.9.1-cp37-cp37m-win_amd64.whl (852.3 kB view hashes)

Uploaded CPython 3.7m Windows x86-64

torchvision-0.9.1-cp37-cp37m-manylinux2014_aarch64.whl (11.8 MB view hashes)

Uploaded CPython 3.7m

torchvision-0.9.1-cp37-cp37m-manylinux1_x86_64.whl (17.4 MB view hashes)

Uploaded CPython 3.7m

torchvision-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl (13.2 MB view hashes)

Uploaded CPython 3.7m macOS 10.9+ x86-64

torchvision-0.9.1-cp36-cp36m-win_amd64.whl (852.4 kB view hashes)

Uploaded CPython 3.6m Windows x86-64

torchvision-0.9.1-cp36-cp36m-manylinux2014_aarch64.whl (11.8 MB view hashes)

Uploaded CPython 3.6m

torchvision-0.9.1-cp36-cp36m-manylinux1_x86_64.whl (17.4 MB view hashes)

Uploaded CPython 3.6m

torchvision-0.9.1-cp36-cp36m-macosx_10_9_x86_64.whl (13.2 MB view hashes)

Uploaded CPython 3.6m macOS 10.9+ x86-64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page