Algorithmic trading and quantitative financial analysis framework for decentralised exchanges and blockchains
Project description
Trading Strategy framework for Python
Trading Strategy framework is a Python framework for algorithmic trading on decentralised exchanges. It is using backtesting data and real-time price feeds from Trading Strategy Protocol.
Use cases
-
Analyse cryptocurrency investment opportunities on decentralised exchanges (DEXes)
-
Creating trading algorithms and trading bots that trade on DEXes
-
Deploy trading strategies as on-chain smart contracts where users can invest and withdraw with their wallets
Features
-
Supports multiple blockchains like Ethereum mainnet, Binance Smart Chain and Polygon
-
Access trading data from on-chain decentralised exchanges like SushiSwap, QuickSwap and PancakeSwap
-
Integration with Jupyter Notebook for easy manipulation of data. See example notebooks.
-
Write algorithmic trading strategies for decentralised exchange
Getting started
See the Getting Started tutorial and the rest of the Trading Strategy documentation.
Prerequisites
Python 3.9+
Installing the package
Note: Unless you are an experienced Python developer, try the Binder cloud hosted Jupyter notebook examples first.
You can install this package with
poetry
:
poetry add trading-strategy
pip
:
pip install trading-strategy
Documentation
Community
Read more documentation how to develop this package.
License
GNU AGPL 3.0.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for trading_strategy-0.7.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4464aa3d8ec99ec696a3355b257ebb02dff1472bc50ea261040eb849cd4b65e2 |
|
MD5 | 78c45ff477dd99b13625b0730fb580e4 |
|
BLAKE2b-256 | 3d0f5031cd664c80341f6dc5cff7ab242f3601f70f2937b54bf09a4dd97a741d |