Skip to main content

GDB-like Python Debugger in the Trepan family

Project description

buildstatus License Supported Python Versions

Abstract

This is a gdb-like debugger for Python. It is a rewrite of pdb from the ground up.

A command-line interface (CLI) is provided as well as an remote access interface over TCP/IP.

See the Tutorial for how to use. See ipython-trepan for using this in ipython or an ipython notebook.

This package is for Python 3.2 and above. See trepan2 for the same code modified to work with Python 2.

Features

Since this debugger is similar to other trepanning debuggers and gdb in general, knowledge gained by learning this is transferable to those debuggers and vice versa.

There’s a lot of cool stuff here that’s not in the stock Python debugger pdb.

Exact location information

Python reports line information on the granularity of a line. To get more precise information, we can (de)parse into Python the byte code around a bytecode offset such as the place you are stopped at.

So far as I know, there is no other debugger that can do this.

Debugging Python bytecode (no source available)

You can pass the debugger the name of Python bytecode and many times, the debugger will merrily proceed. This debugger tries very hard find the source code. Either by using the current executable search path (e.g. PATH) or for some by looking inside the bytecode for a filename in the main code object (co_filename) and applying that with a search path which takes into account directory where the bytecode lives.

Failing to find source code this way, and in other situations where source code can’t be found, the debugger will decompile the bytecode and use that for showing source test. This allows us to debug `eval`’d or `exec’’d code.

But if you happen to know where the source code is located, you can associate a file source code with the current name listed in the bytecode. See the set_substitute command for details here.

Source-code Syntax Colorization

Starting with release 0.2.0, terminal source code is colorized via pygments . And with that you can set the pygments color style, e.g. “colorful”, “paraiso-dark”. See set_style . Furthermore, we make use of terminal bold and emphasized text in debugger output and help text. Of course, you can also turn this off. Starting with release 0.6.0, you can use your own pygments_style, provided you have a terminal that supports 256 colors. If your terminal supports the basic ANSI color sequences only, we support that too in both dark and light themes.

Command Completion

Starting with release 2.8, readline command completion has been added. Command completion is not just a simple static list, but varies depending on the context. For example, for frame-changing commands which take optional numbers, on the list of valid numbers is considered.

Terminal Handling

We can adjust debugger output depending on the line width of your terminal. If it changes, or you want to adjust it, see set_width .

Smart Eval

Starting with release 0.2.0, if you want to evaluate the current source line before it is run in the code, use eval or deval. To evaluate text of a common fragment of line, such as the expression part of an if statement, you can do that with eval? or deval?. See eval for more information.

More Stepping Control

Sometimes you want small steps, and sometimes large stepping.

This fundamental issue is handled in a couple ways:

Step Granularity

There are now step event and next event commands with aliases to s+, s> and so on. The plus-suffixed commands force a different line on a subsequent stop, the dash-suffixed commands don’t. Suffixes >, <, and ! specify call, return and exception events respectively. And without a suffix you get the default; this is set by the set different command.

Documentation

Documentation: http://python3-trepan.readthedocs.org

Event Filtering and Tracing

By default the debugger stops at every event: call, return, line, exception, c-call, c-exception. If you just want to stop at line events (which is largely what you happens in pdb) you can. If however you just want to stop at calls and returns, that’s possible too. Or pick some combination.

In conjunction with handling all events by default, the event status is shown when stopped. The reason for stopping is also available via info program.

Event Tracing of Calls and Returns

I’m not sure why this was not done before. Probably because of the lack of the ability to set and move by different granularities, tracing calls and returns lead to too many uninteresting stops (such as at the same place you just were at). Also, stopping on function definitions probably also added to this tedium.

Because we’re really handling return events, we can show you the return value. (pdb has an “undocumented” retval command that doesn’t seem to work.)

Debugger Macros via Python Lambda expressions

Starting with release 0.2.3, there are debugger macros. In gdb, there is a macro debugger command to extend debugger commands.

However Python has its own rich programming language so it seems silly to recreate the macro language that is in gdb. Simpler and more powerful is just to use Python here. A debugger macro here is just a lambda expression which returns a string or a list of strings. Each string returned should be a debugger command.

We also have aliases for the extremely simple situation where you want to give an alias to an existing debugger command. But beware: some commands, like step inspect command suffixes and change their behavior accordingly.

We also envision a number of other ways to allow extension of this debugger either through additional modules, or user-supplied debugger command directories.

If what you were looking for in macros was more front-end control over the debugger, then consider using the experimental (and not finished) Bullwinkle protocol.

Byte-code Instruction Introspection

We do more in the way of looking at the byte codes to give better information. Through this we can provide:

  • a skip command. It is like the jump command, but you don’t have to deal with line numbers.

  • disassembly of code fragments. You can now disassemble relative to the stack frames you are currently stopped at.

  • Better interpretation of where you are when inside execfile or exec. (But really though this is probably a Python compiler misfeature.)

  • Check that breakpoints are set only where they make sense.

  • A more accurate determination of if you are at a function-defining def statement (because the caller instruction contains MAKE_FUNCTION.)

Even without “deparsing” mentioned above, the abilty to disassemble by line number range or byte-offset range lets you tell exactly where you are and code is getting run.

Some Debugger Command Arguments can be Variables and Expressions

Commands that take integer arguments like frame-moving commands like up, allow you to use a Python expression which may include local or global variables that evaluates to an integer. This eliminates the need in gdb for special “dollar” debugger variables. (Note however because of shlex parsing, expressions can’t have embedded blanks.)

Out-of-Process Debugging

You can now debug your program in a different process or even a different computer on a different network!

Egg, Wheel, and Tarballs

Can be installed via the usual pip or easy_install. There is a source tarball. How To Install has full instructions and installing from git and by other means.

Modularity

The Debugger plays nice with other trace hooks. You can have several debugger objects.

Many of the things listed below doesn’t directly effect end-users, but it does eventually by way of more robust and featureful code. And keeping developers happy is a good thing.(TM)

  • Commands and subcommands are individual classes now, not methods in a class. This means they now have properties like the context in which they can be run, minimum abbreviation name or alias names. To add a new command you basically add a file in a directory.

  • I/O is it’s own layer. This simplifies interactive readline behavior from reading commands over a TCP socket.

  • An interface is it’s own layer. Local debugging, remote debugging, running debugger commands from a file (source) are different interfaces. This means, for example, that we are able to give better error reporting if a debugger command file has an error.

  • There is an experimental Python-friendly interface for front-ends

  • more testable. Much more unit and functional tests. More of pydb’s integration test will eventually be added.

See Also

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trepan3k-0.8.9.tar.gz (239.6 kB view details)

Uploaded Source

Built Distributions

trepan3k-0.8.9-py3.7.egg (636.8 kB view details)

Uploaded Source

trepan3k-0.8.9-py3.6.egg (636.6 kB view details)

Uploaded Source

trepan3k-0.8.9-py3.5.egg (646.4 kB view details)

Uploaded Source

trepan3k-0.8.9-py3.4.egg (648.4 kB view details)

Uploaded Source

trepan3k-0.8.9-py3.3.egg (658.3 kB view details)

Uploaded Source

trepan3k-0.8.9-py3.2.egg (648.8 kB view details)

Uploaded Source

File details

Details for the file trepan3k-0.8.9.tar.gz.

File metadata

  • Download URL: trepan3k-0.8.9.tar.gz
  • Upload date:
  • Size: 239.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for trepan3k-0.8.9.tar.gz
Algorithm Hash digest
SHA256 9b828d1339faef64d23b33bee75b19d77a5d4316f4223f42c1c7a657f6d86d11
MD5 6f78d0906487eee28ccf438d8705bbf2
BLAKE2b-256 80453b99f73e53851ce524c895a1739023d044b87c8b6fcafe084f344141dcab

See more details on using hashes here.

Provenance

File details

Details for the file trepan3k-0.8.9-py3.7.egg.

File metadata

  • Download URL: trepan3k-0.8.9-py3.7.egg
  • Upload date:
  • Size: 636.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for trepan3k-0.8.9-py3.7.egg
Algorithm Hash digest
SHA256 98b64e97052026f094849b7700c72aa317f563e74dd5571338f20e1064c40845
MD5 1b4357228446320999e7c9b77c90e797
BLAKE2b-256 7eb377d9272383ba49b7a0c8a03f0b906d95abe8a4601e05ef2219c2bfdd19c5

See more details on using hashes here.

Provenance

File details

Details for the file trepan3k-0.8.9-py3.6.egg.

File metadata

  • Download URL: trepan3k-0.8.9-py3.6.egg
  • Upload date:
  • Size: 636.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for trepan3k-0.8.9-py3.6.egg
Algorithm Hash digest
SHA256 e3fce3ed2c0cc192b1348144fb97fdc911351dbc8f14770930577aa3e796a682
MD5 f7122036103282fdf58a2ea85bcf5c99
BLAKE2b-256 456163ca9b4f12d171fc455b0920367a8b8e9ecd3dc27d3d273df2bfa6344fd3

See more details on using hashes here.

Provenance

File details

Details for the file trepan3k-0.8.9-py3.5.egg.

File metadata

  • Download URL: trepan3k-0.8.9-py3.5.egg
  • Upload date:
  • Size: 646.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for trepan3k-0.8.9-py3.5.egg
Algorithm Hash digest
SHA256 54e45aa1de7b5591e4fac947a6e6754a9f6d559b446b440d3238f01674f51540
MD5 c314e4cfb8d63e9b0cbaa0f0dae5a05a
BLAKE2b-256 25d10d5ab0c55b80a9b38f974f8652b21e92b1586ca88e344920d1d33423e87c

See more details on using hashes here.

Provenance

File details

Details for the file trepan3k-0.8.9-py3.4.egg.

File metadata

  • Download URL: trepan3k-0.8.9-py3.4.egg
  • Upload date:
  • Size: 648.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for trepan3k-0.8.9-py3.4.egg
Algorithm Hash digest
SHA256 90d05ac28c7c5c6480dd29513b7621226b85fec32fb81f9333c8634a3c18b220
MD5 9bf0456eaabe47e6382f2884b5c96c30
BLAKE2b-256 755e835762bf70e9aa65ed6800269eea83f5b91b0f1dbd3a20e430270d730be1

See more details on using hashes here.

Provenance

File details

Details for the file trepan3k-0.8.9-py3.3.egg.

File metadata

  • Download URL: trepan3k-0.8.9-py3.3.egg
  • Upload date:
  • Size: 658.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for trepan3k-0.8.9-py3.3.egg
Algorithm Hash digest
SHA256 22117d32f955c56ba2df339cd1f045884469c560c0ecedc60c3069e61321847c
MD5 58b6fd1d3b3a79e5f8f987a3bd79e8b7
BLAKE2b-256 3598a2172e4394dbdcff938d3a8f289183bf2b985fe17b9263102d67107d035b

See more details on using hashes here.

Provenance

File details

Details for the file trepan3k-0.8.9-py3.2.egg.

File metadata

  • Download URL: trepan3k-0.8.9-py3.2.egg
  • Upload date:
  • Size: 648.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for trepan3k-0.8.9-py3.2.egg
Algorithm Hash digest
SHA256 9f1228e18c7a9127239df5f47fdc5bc7f91c34d7407ac193ea3d0ec23ba75dd2
MD5 605ee84648a4cc6183f1ce677b965d3a
BLAKE2b-256 3eb9a1f560102a6b9826ee930dddf31d6a5bce00b42012dda049a69da94660a4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page