Skip to main content

Triton Model Navigator provides tools supporting to create Deep Learning production ready inference models

Project description

Model optimization plays a crucial role in unlocking the maximum performance capabilities of the underlying hardware. By applying various transformation techniques, models can be optimized to fully utilize the specific features offered by the hardware architecture to improve the inference performance and cost. Furthermore, in many cases allow for serialization of models, separating them from the source code. The serialization process enhances portability, allowing the models to be seamlessly deployed in production environments. The decoupling of models from the source code also facilitates maintenance, updates, and collaboration among developers. However, this process comprises multiple steps and offers various potential paths, making manual execution complicated and time-consuming.

The Triton Model Navigator offers a user-friendly and automated solution for optimizing and deploying machine learning models. Using a single entry point for various supported frameworks, allowing users to start the process of searching for the best deployment option with a single call to the dedicated optimize function. Model Navigator handles model export, conversion, correctness testing, and profiling to select optimal model format and save generated artifacts for inference deployment on the PyTriton or Triton Inference Server .

The Model Navigator generates multiple optimized and production-ready models. The table below illustrates the model formats that can be obtained by using the Model Navigator with various frameworks.

Table: Supported conversion target formats per each supported Python framework or file.

PyTorch

TensorFlow 2

JAX

ONNX

Torch 2 Compile TorchScript Trace TorchScript Script TorchTensorRT ONNX TensorRT

SavedModel TensorRT in TensorFlow ONNX TensorRT

SavedModel TensorRT in TensorFlow ONNX TensorRT

TensorRT

Note: The Model Navigator has the capability to support any Python function as input. However, in this particular case, its role is limited to profiling the function without generating any serialized models.

The Model Navigator stores all artifacts within the navigator_workspace. Additionally, it provides the option to save a portable and transferable Navigator Package that includes only the models with minimal latency and maximal throughput. This package also includes base formats that can be used to regenerate the TensorRT plan on the target hardware.

Table: Model formats that can be generated from saved Navigator Package and from model sources.

From model source

From Navigator Package

SavedModel TensorRT in TensorFlow TorchScript Trace TorchScript Script Torch 2 Compile TorchTensorRT ONNX TensorRT

TorchTensorRT TensorRT in TensorFlow ONNX TensorRT

Installation

The package can be installed using extra index url:

pip install -U --extra-index-url https://pypi.ngc.nvidia.com triton-model-navigator[<extras,>]

or with nvidia-pyindex:

pip install nvidia-pyindex
pip install -U triton-model-navigator[<extras,>]

Extras:

  • tensorflow - Model Navigator with dependencies for TensorFlow2

  • jax - Model Navigator with dependencies for JAX

For using with PyTorch no extras are needed.

Quick Start

Optimizing models using Model Navigator is as simply as calling optimize function. The optimization process requires at least:

  • model - a Python object, callable or file path with model to optimize.

  • dataloader - a method or class generating input data. The data is utilized to determine the maximum and minimum shapes of the model inputs and create output samples that are used during the optimization process.

Here is an example of running optimize on Torch Hub ResNet50 model:

import logging

import torch
import model_navigator as nav

nav.torch.optimize(
    model=torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True).eval(),
    dataloader=[torch.randn(1, 3, 256, 256) for _ in range(10)],
)

Once the model has been optimized the created artifacts are stored in navigator_workspace and a Package object is returned from the function. The returned object can be used to create Navigator Package or deploy model on PyTriton or Triton Inference Server. Read more about it in documentation

Examples

We provide step-by-step examples that demonstrate how to use various features of Model Navigator. For the sake of readability and accessibility, we use a simple torch.nn.Linear model as an example. These examples illustrate how to optimize, test and deploy the model on the PyTriton and Triton Inference Server.

Examples: https://github.com/triton-inference-server/model_navigator/tree/main/examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

triton_model_navigator-0.6.0-py3-none-any.whl (254.3 kB view details)

Uploaded Python 3

File details

Details for the file triton_model_navigator-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: triton_model_navigator-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 254.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/37.1 requests/2.28.1 requests-toolbelt/0.9.1 urllib3/1.26.12 tqdm/4.64.1 importlib-metadata/4.12.0 keyring/23.9.1 rfc3986/2.0.0 colorama/0.4.5 CPython/3.10.12

File hashes

Hashes for triton_model_navigator-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 919fc76af9da82039a4b1c0a5c43686d1f3b6d3e808f3b1881ab73f7a8350db8
MD5 e4e0ed961a98071460d2dad180e00e95
BLAKE2b-256 91b1ac7f51b38f9ecf0c8268bc7cc5baeabcaa1a032a5513459749897c9d92b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page