Skip to main content

A Pytorch implementation of Proximal Policy Optimization for transfomer language models.

Project description

TRL - Transformer Reinforcement Learning

Train transformer language models with reinforcement learning.

What is it?

With trl you can train transformer language models with Proximal Policy Optimization (PPO). The library is built on top of the transformers library by 🤗 Hugging Face. Therefore, pre-trained language models can be directly loaded via transformers. At this point most of decoder architectures and encoder-decoder architectures are supported.

Highlights:

  • PPOTrainer: A PPO trainer for language models that just needs (query, response, reward) triplets to optimise the language model.
  • AutoModelForCausalLMWithValueHead & AutoModelForSeq2SeqLMWithValueHead: A transformer model with an additional scalar output for each token which can be used as a value function in reinforcement learning.
  • Example: Train GPT2 to generate positive movie reviews with a BERT sentiment classifier.

How it works

Fine-tuning a language model via PPO consists of roughly three steps:

  1. Rollout: The language model generates a response or continuation based on query which could be the start of a sentence.
  2. Evaluation: The query and response are evaluated with a function, model, human feedback or some combination of them. The important thing is that this process should yield a scalar value for each query/response pair.
  3. Optimization: This is the most complex part. In the optimisation step the query/response pairs are used to calculate the log-probabilities of the tokens in the sequences. This is done with the model that is trained and and a reference model, which is usually the pre-trained model before fine-tuning. The KL-divergence between the two outputs is used as an additional reward signal to make sure the generated responses don't deviate to far from the reference language model. The active language model is then trained with PPO.

This process is illustrated in the sketch below:

Figure: Sketch of the workflow.

Installation

Python package

Install the library with pip:

pip install trl

From source

If you want to run the examples in the repository a few additional libraries are required. Clone the repository and install it with pip:

git clone https://github.com/lvwerra/trl.git
cd trl/
pip install .

How to use

Example

This is a basic example on how to use the library. Based on a query the language model creates a response which is then evaluated. The evaluation could be a human in the loop or another model's output.

# imports
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
from trl.core import respond_to_batch

# get models
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
model_ref = create_reference_model(model)

tokenizer = AutoTokenizer.from_pretrained('gpt2')

# initialize trainer
ppo_config = PPOConfig(
    batch_size=1,
    forward_batch_size=1
)

# encode a query
query_txt = "This morning I went to the "
query_tensor = tokenizer.encode(query_txt, return_tensors="pt")

# get model response
response_tensor  = respond_to_batch(model_ref, query_tensor)

# create a ppo trainer
ppo_trainer = PPOTrainer(ppo_config, model, model_ref, tokenizer)

# define a reward for response
# (this could be any reward such as human feedback or output from another model)
reward = [torch.tensor(1.0)]

# train model for one step with ppo
train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)

Advanced example: IMDB sentiment

For a detailed example check out the example python script examples/scripts/ppo-sentiment.py, where GPT2 is fine-tuned to generate positive movie reviews. An few examples from the language models before and after optimisation are given below:

Figure: A few review continuations before and after optimisation.

References

Proximal Policy Optimisation

The PPO implementation largely follows the structure introduced in the paper "Fine-Tuning Language Models from Human Preferences" by D. Ziegler et al. [paper, code].

Language models

The language models utilize the transformers library by 🤗 Hugging Face.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trl-0.2.1.tar.gz (37.1 kB view details)

Uploaded Source

Built Distribution

trl-0.2.1-py3-none-any.whl (38.5 kB view details)

Uploaded Python 3

File details

Details for the file trl-0.2.1.tar.gz.

File metadata

  • Download URL: trl-0.2.1.tar.gz
  • Upload date:
  • Size: 37.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for trl-0.2.1.tar.gz
Algorithm Hash digest
SHA256 c44433e46d2637ee5a70f06f2c69111506b2f0d6122734b94ffee2ccb850185f
MD5 1a07690382284a17fbd1ff2157500507
BLAKE2b-256 05da2e683c955efc34f851f78359c465d46e36618af581b92310be6463b90030

See more details on using hashes here.

File details

Details for the file trl-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: trl-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 38.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for trl-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 34b4976046dfdd1de8890e4cc11c6c081c8bb30070f81b3de23b3b504a24ff8c
MD5 8ea553f193028b29fb98b7d6f1460d72
BLAKE2b-256 94ce0fc4a477f68b3ee8ac88127c753401ab09d89c7af429139f2868228167be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page