Skip to main content

Tenacious & trustworthy tool calling built on LangGraph.

Project description

trustcall

Tenacious tool calling built on LangGraph.

Uses patch-based extraction for:

  • Faster & cheaper generation of structured output.
  • Resilient retrying of validation errors, even for complex, nested schemas.
  • Acccurate updates to existing schemas, avoiding undesired deletions.

Works flexibly across a number of common LLM workflows:

  1. Extraction
  2. LLM routing
  3. Multi-step agent tool use

and more!

Examples

First, install:

pip install -U trustcall langchain-fireworks

Then set up your schema:

from typing import List

from langchain_fireworks import ChatFireworks
from pydantic.v1 import BaseModel, Field, validator
from trustcall import create_extractor


class Preferences(BaseModel):
    foods: List[str] = Field(description="Favorite foods")

    @validator("foods")
    def at_least_three_foods(cls, v):
        # Just a silly example to show how it can recover from a
        # validation error.
        if len(v) < 3:
            raise ValueError("Must have at least three favorite foods")
        return v


llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v2")

extractor = create_extractor(llm, tools=[Preferences], tool_choice="Preferences")
res = extractor.invoke({"messages": [("user", "I like apple pie and ice cream.")]})
msg = res["messages"][-1]
print(msg.tool_calls)
print(res["responses"])
# [{'id': 'call_pBrHTBNHNLnGCv7UBKBJz6xf', 'name': 'Preferences', 'args': {'foods': ['apple pie', 'ice cream', 'pizza', 'sushi']}}]
# [Preferences(foods=['apple pie', 'ice cream', 'pizza', 'sushi'])]

Since the extractor also returns the chat message (with validated and cleaned tools), you can easiliy use the abstraction for conversational agent applications:

import operator
from datetime import datetime
from typing import List

import pytz
from langchain_fireworks import ChatFireworks
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import ToolNode, tools_condition
from pydantic.v1 import BaseModel, Field, validator
from trustcall import create_extractor
from typing_extensions import Annotated, TypedDict


class Preferences(BaseModel):
    foods: List[str] = Field(description="Favorite foods")

    @validator("foods")
    def at_least_three_foods(cls, v):
        if len(v) < 3:
            raise ValueError("Must have at least three favorite foods")
        return v


llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v2")


def save_user_information(preferences: Preferences):
    """Save user information to a database."""
    return "User information saved"


def lookup_time(tz: str) -> str:
    """Lookup the current time in a given timezone."""
    try:
        # Convert the timezone string to a timezone object
        timezone = pytz.timezone(tz)
        # Get the current time in the given timezone
        tm = datetime.now(timezone)
        return f"The current time in {tz} is {tm.strftime('%H:%M:%S')}"
    except pytz.UnknownTimeZoneError:
        return f"Unknown timezone: {tz}"


agent = create_extractor(llm, tools=[save_user_information, lookup_time])


class State(TypedDict):
    messages: Annotated[list, operator.add]


builder = StateGraph(State)
builder.add_node("agent", agent)
builder.add_node("tools", ToolNode([save_user_information, lookup_time]))
builder.add_edge("tools", "agent")
builder.add_edge(START, "agent")
builder.add_conditional_edges("agent", tools_condition)

graph = builder.compile(checkpointer=MemorySaver())
config = {"configurable": {"thread_id": "1234"}}
res = graph.invoke({"messages": [("user", "Hi there!")]}, config)
res["messages"][-1].pretty_print()
# ================================== Ai Message ==================================

# I'm happy to help you with any questions or tasks you have. What's on your mind today?
res = graph.invoke(
    {"messages": [("user", "Curious; what's the time in denver right now?")]}, config
)
res["messages"][-1].pretty_print()
# ================================== Ai Message ==================================

# The current time in Denver is 00:57:25.
res = graph.invoke(
    {
        "messages": [
            ("user", "Did you know my favorite foods are spinach and potatoes?")
        ]
    },
    config,
)
res["messages"][-1].pretty_print()
# ================================== Ai Message ==================================

# I've saved your favorite foods, spinach and potatoes.

If you check out the last call in that conversation, you can see that the agent initially generated an invalid tool call, but our validation was able to fix up the output before passing the payload on to our tools.

These are just a couple examples to highlight what you can accomplish with trustcall.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trustcall-0.0.1.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

trustcall-0.0.1-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file trustcall-0.0.1.tar.gz.

File metadata

  • Download URL: trustcall-0.0.1.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.2 Darwin/23.4.0

File hashes

Hashes for trustcall-0.0.1.tar.gz
Algorithm Hash digest
SHA256 7a722630b2ad24ec96929400cb309510ca66ee0dd21c39078292762db5c78316
MD5 c2963f9eca1eb4fe986db73b2fa7dcbe
BLAKE2b-256 b5ce587122c0f54cf07d7b0057a9993e163e952c41b32770f4c625e8d3732379

See more details on using hashes here.

File details

Details for the file trustcall-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: trustcall-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.2 Darwin/23.4.0

File hashes

Hashes for trustcall-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 93ead5236a81b4a4e4ba6391cc04f53531a875198d8292d586e737375b0553b2
MD5 08997f550ebad6e0053549fb12a9b85c
BLAKE2b-256 4041f2e7cdcf5b76897dfe10430ccb7c5daf2e1dae206110715a6189a0bc262f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page