Skip to main content

Analysis tool for the search of narrow band drifting signals in filterbank data

Project description

TURBO_SETI

 

Summary

turboSETI is an analysis tool for the search of narrow band drifting signals in filterbank data (frequency vs. time). The main purpose of the code is to hopefully one day find signals of extraterrestrial origin!! It can search the data for hundreds of drift rates (in Hz/sec). It can handle either .fil or .h5 file formats.

NOTE: This code is stable, but new features are currently under development. 'Git pull' for the latest version.

Some details for the expert eye:

  • Python based, with taylor tree in Cython for improved performance.
  • Pre-calculated drift index arrays.
  • Output plain text file with information on each hit.
  • Including output reader into a pandas DataFrame.

It was originally based on dedoppler dedoppler; which is based on rawdopplersearch.c gbt_seti/src/rawdopplersearch.c)

 


Dependencies

 


Usage

Expected Inputs

At the moment it expects a single .h5 file produced with blimpy.Waterfall .

Command Line

$turboSETI <FULL_PATH_TO_INPUT_FIL_FILE> [OPTIONS]

Use $turboSETI -h to view usage details.

 

Example:

NOTE:

Will add an example file here in the near future.

Sample Outputs

 

File ID: blc07_guppi_57650_67573_Voyager1_0002.gpuspec.0000_57
Source:Voyager1 MJD: 57650.782094907408 RA:  17:10:04.0 DEC:  +12:10:58.8       DELTAT:  18.253611      DELTAF(Hz):   2.793968
--------------------------
N_candidates: 1055
--------------------------
Top Hit #       Drift Rate      SNR     Uncorrected Frequency   Corrected Frequency     Index   freq_start      freq_end        SEFD    SEFD_freq
--------------------------
001      -0.353960       51.107710         8419.274366     8419.274366  292536     8419.274344     8419.274386  0.0           0.000000
002      -0.363527       48.528281         8419.274687     8419.274687  292651     8419.274665     8419.274707  0.0           0.000000
003      -0.382660      118.779830         8419.297028     8419.297028  300647     8419.297006     8419.297047  0.0           0.000000
004      -0.392226       51.193226         8419.319366     8419.319366  308642     8419.319343     8419.319385  0.0           0.000000
005      -0.363527       49.893235         8419.319681     8419.319681  308755     8419.319659     8419.319701  0.0           0.000000
006       0.000000      298.061948         8419.921871     8419.921871  524287     8419.921848     8419.921890  0.0           0.000000

 

Use as a package

> import turbo_seti
> from turbo_seti.findoppler.findopp import FinDoppler

BL internal:

Currently, there is some voyager test data in bls0 at the GBT cluster. From the .../turbo_seti/bin/ folder run the next command.

$ python seti_event.py /datax/users/eenriquez/voyager_test/blc07_guppi_57650_67573_Voyager1_0002.gpuspec.0000.fil -o <your_test_folder> -M 2

This will take /datax/users/eenriquez/voyager_test/blc07_guppi_57650_67573_Voyager1_0002.gpuspec.0000.fil as input (and in this particular case it will discover that this file is too big to handle all at once, so it will first partition it into smaller FITS files and save them into the directory specified by option -o, and then proceed with drift signal search for each small FITS files). Everything else was set to default values.

Sample Outputs: See /datax/eenriquez/voyager_test/*/*.log, /datax/eenriquez/voyager_test/*.dat for search results and see /datax/eenriquez/voyager_test/*.png for some plots.

 

Build Status

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

turbo_seti-1.1.1.tar.gz (191.2 kB view details)

Uploaded Source

Built Distribution

turbo_seti-1.1.1-cp37-cp37m-manylinux1_x86_64.whl (293.5 kB view details)

Uploaded CPython 3.7m

File details

Details for the file turbo_seti-1.1.1.tar.gz.

File metadata

  • Download URL: turbo_seti-1.1.1.tar.gz
  • Upload date:
  • Size: 191.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5

File hashes

Hashes for turbo_seti-1.1.1.tar.gz
Algorithm Hash digest
SHA256 2da8effbcaeca6bd348b351ebe5bf38ff9fe461495e755b8eec4973a4f0ed732
MD5 a344a0b64becce7ec25a4386ab36b4c9
BLAKE2b-256 2efc248230cbd8fe60350447d35745918ea941f1336e6d786cd29ebfb93171eb

See more details on using hashes here.

Provenance

File details

Details for the file turbo_seti-1.1.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: turbo_seti-1.1.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 293.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5

File hashes

Hashes for turbo_seti-1.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 93bb61c30ea7dbd3002e9b1a586e55d3a8cd0de11f8a06ef7ca033e552400e05
MD5 db6bbcf619b0af943a0472ef900c1501
BLAKE2b-256 11b331c84ca71ca5e9eb226ad15d5071455d9173e49e41b215287481365f4729

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page