Skip to main content

Analysis tool for the search of narrow band drifting signals in filterbank data

Project description

Build Status Documentation Status codecov

TURBO_SETI

turboSETI is an analysis tool for the search of narrow band drifting signals in filterbank data (frequency vs. time). The main purpose of the code is to hopefully one day find signals of extraterrestrial origin!! It can search the data for hundreds of drift rates (in Hz/sec). It can handle either .fil or .h5 file formats.

NOTE: This code is stable, but new features are currently under development. 'Git pull' for the latest version.

Some details for the expert eye:

  • Python based, with taylor tree in Numba for improved performance.
  • Pre-calculated drift index arrays.
  • Output plain text file with information on each hit.
  • Including output reader into a pandas DataFrame.

It was originally based on dedoppler dedoppler; which is based on rawdopplersearch.c gbt_seti/src/rawdopplersearch.c)

 


Dependencies

 


Installation

If you have not yet installed blimpy, do so in this manner:

python3 -m pip install --user -U git+https://github.com/UCBerkeleySETI/blimpy

Then, install turbo_seti directly from this repository:

python3 -m pip install --user -U git+https://github.com/UCBerkeleySETI/turbo_seti

NVIDIA GPU Users

Already included is NUMBA Just-in-Time (JIT) CPU performance enhancements. However, if you have NVIDIA GPU hardware on the computer where turbo_seti is going to execute, you can get significant additional performance improvement. Enable GPU enhanced processing with these steps:

  1. Install pypi package "cupy": python3 -m pip install cupy
  2. Run the executable this way: turboSETI <FULL_PATH_TO_INPUT_HDF5_FILE> -g y [OTHER OPTIONS]

Once you are using a GPU, you may also want to use the --single_precision=y flag, to use float32 rather than float64 processing. Each of these changes has the potential to roughly double turboSETI's speed, although performance improvements always depend on the details of your hardware and data set.

Usage

Expected Input File Format

At the moment, the turboSETI command line and the FindDoppler object expect an HDF5 file (.h5) or a Filterbank file (.fil) such as produced by one of the blimpy utilities.

Usage as a Command Line

Run with data: turboSETI <FULL_PATH_TO_INPUT_HDF5_FILE> [OPTIONS]

For an explanation of the program options: turboSETI -h

Usage as a Python Package

from turbo_seti.find_doppler.find_doppler import FindDoppler
fdop = FindDoppler(datafile=my_HDF5_file, ...)
fdop.search(...)

Example Usage as a Python Package

import time
from blimpy import Waterfall
from turbo_seti.find_doppler.find_doppler import FindDoppler

H5DIR = "/seti_data/voyager/"
H5PATH = H5DIR + "Voyager1.single_coarse.fine_res.h5"
OUT_DIR_BASE = H5DIR

print("\nUsing HDF5 file: {}\nHeader and data shape:".format(H5PATH))
# -- Get a report of header and data shape
wf = Waterfall(H5PATH)
wf.info()
# -- Instantiate FindDoppler.
print("\nInstantiating the FindDoppler object.")
fdop = FindDoppler(datafile=H5PATH, max_drift=4, snr=25, out_dir=H5DIR)
# -- Search for hits and report elapsed time.
print("\nBegin doppler search.  Please wait ...")
t1 = time.time()
fdop.search()
elapsed_time = time.time() - t1
print("\nFindDoppler.search() elapsed time = {} seconds".format(elapsed_time))

Sample DAT File Output

# -------------------------- o --------------------------
# File ID: Voyager1.single_coarse.fine_res.h5 
# -------------------------- o --------------------------
# Source:Voyager1
# MJD: 57650.782094907408	RA: 17h10m03.984s	DEC: 12d10m58.8s
# DELTAT:  18.253611	DELTAF(Hz):  -2.793968
# --------------------------
# Top_Hit_# 	Drift_Rate 	SNR 	Uncorrected_Frequency 	Corrected_Frequency 	Index 	freq_start 	freq_end 	SEFD 	SEFD_freq 	Coarse_Channel_Number 	Full_number_of_hits 	
# --------------------------
001	 -0.392226	 30.612128	   8419.319368	   8419.319368	739933	   8419.321003	   8419.317740	0.0	      0.000000	0	858	
002	 -0.373093	245.707984	   8419.297028	   8419.297028	747929	   8419.298662	   8419.295399	0.0	      0.000000	0	858	
003	 -0.392226	 31.220652	   8419.274374	   8419.274374	756037	   8419.276009	   8419.272745	0.0	      0.000000	0	858	

Sample Console Logging (level=INFO) Output

Note that the coarse channel number appears as a suffix of the logger name. For example, "find_doppler.8" depicts logging for find_doppler.py in coarse channel number 8 (relative to 0).

Using HDF5 file: /seti_data/voyager/Voyager1.single_coarse.fine_res.h5
Header and data shape:

--- File Info ---
DIMENSION_LABELS :   ['frequency' 'feed_id' 'time']
        az_start :                              0.0
       data_type :                                1
            fch1 :            8421.386717353016 MHz
            foff :      -2.7939677238464355e-06 MHz
           ibeam :                                1
      machine_id :                               20
          nbeams :                                1
           nbits :                               32
          nchans :                          1048576
            nifs :                                1
     rawdatafile : guppi_57650_67573_Voyager1_0002.0000.raw
     source_name :                         Voyager1
         src_dej :                       12:10:58.8
         src_raj :                     17:10:03.984
    telescope_id :                                6
           tsamp :                     18.253611008
   tstart (ISOT) :          2016-09-19T18:46:13.000
    tstart (MJD) :                57650.78209490741
        za_start :                              0.0

Num ints in file :                               16
      File shape :                 (16, 1, 1048576)
--- Selection Info ---
Data selection shape :                 (16, 1, 1048576)
Minimum freq (MHz) :                8418.457032646984
Maximum freq (MHz) :                8421.386717353016

Instantiating the FindDoppler object.
find_doppler.0  INFO     {'DIMENSION_LABELS': array(['frequency', 'feed_id', 'time'], dtype=object), 'az_start': 0.0, 'data_type': 1, 'fch1': 8421.386717353016, 'foff': -2.7939677238464355e-06, 'ibeam': 1, 'machine_id': 20, 'nbeams': 1, 'nbits': 32, 'nchans': 1048576, 'nifs': 1, 'rawdatafile': 'guppi_57650_67573_Voyager1_0002.0000.raw', 'source_name': 'Voyager1', 'src_dej': <Angle 12.183 deg>, 'src_raj': <Angle 17.16777333 hourangle>, 'telescope_id': 6, 'tsamp': 18.253611008, 'tstart': 57650.78209490741, 'za_start': 0.0}

Begin doppler search.  Please wait ...
find_doppler.0  INFO     File: /seti_data/voyager/Voyager1.single_coarse.fine_res.h5
 drift rates (min, max): (0.000000, 4.000000)
 SNR: 25.000000

Starting ET search using /seti_data/voyager/Voyager1.single_coarse.fine_res.h5
find_doppler.0  INFO     Parameters: datafile=/seti_data/voyager/Voyager1.single_coarse.fine_res.h5, max_drift=4, min_drift=0.0, snr=25, out_dir=/seti_data/voyager/, coarse_chans=None, flagging=False, n_coarse_chan=None, kernels=None, gpu_backend=False, precision=2, append_output=False, log_level_int=20, obs_info={'pulsar': 0, 'pulsar_found': 0, 'pulsar_dm': 0.0, 'pulsar_snr': 0.0, 'pulsar_stats': array([0., 0., 0., 0., 0., 0.]), 'RFI_level': 0.0, 'Mean_SEFD': 0.0, 'psrflux_Sens': 0.0, 'SEFDs_val': [0.0], 'SEFDs_freq': [0.0], 'SEFDs_freq_up': [0.0]}
find_doppler.0  INFO     Top hit found! SNR 30.612128, Drift Rate -0.392226, index 739933
find_doppler.0  INFO     Top hit found! SNR 245.707984, Drift Rate -0.373093, index 747929
find_doppler.0  INFO     Top hit found! SNR 31.220652, Drift Rate -0.392226, index 756037

FindDoppler.search() elapsed time = 9.972093105316162 seconds

 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

turbo_seti-2.1.19.tar.gz (173.8 kB view details)

Uploaded Source

Built Distribution

turbo_seti-2.1.19-py2.py3-none-any.whl (168.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file turbo_seti-2.1.19.tar.gz.

File metadata

  • Download URL: turbo_seti-2.1.19.tar.gz
  • Upload date:
  • Size: 173.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for turbo_seti-2.1.19.tar.gz
Algorithm Hash digest
SHA256 8ff245486675639a57b1032d92a4e585702a485ed9f4128e8ea726f924ed3768
MD5 8a573874876b784fcf926787573022af
BLAKE2b-256 172526e2e44c3f5562124c04d2a8915dbce5c1d42cd8131b6cb3e7310fd5402f

See more details on using hashes here.

Provenance

File details

Details for the file turbo_seti-2.1.19-py2.py3-none-any.whl.

File metadata

  • Download URL: turbo_seti-2.1.19-py2.py3-none-any.whl
  • Upload date:
  • Size: 168.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for turbo_seti-2.1.19-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d1bd233ea0f1ca47ee7f8579c142a0c120905c9d8fb12cc465c506ea98d43579
MD5 8118aebb21cc2754d0bd7641ab3c8f0a
BLAKE2b-256 73dce66e91727afa3f8778047b3ae513995aef273e5b35d5c5576c1155ad13e5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page