Skip to main content

A toolkit for marshalling, unmarshalling, and runtime validation leveraging type annotations.

Project description

Welcome to typelib

Version License: MIT Python Versions Code Size CI Coverage Code Style

Python's Typing Toolkit

typelib provides a sensible, non-invasive, production-ready toolkit for leveraging Python type annotations at runtime.

Quickstart

Installation

poetry add 'typelib[json]'

Bring Your Own Models

We don't care how your data model is implemented - you can use [dataclasses][], [TypedDict][typing.TypedDict], [NamedTuple][typing.NamedTuple], a plain collection, a custom class, or any other modeling library. As long as your type is valid at runtime, we'll support it.

The How and the Where

How: The High-Level API

We have a simple high-level API which should handle most production use-cases:

from __future__ import annotations

import dataclasses
import datetime
import decimal


import typelib

@dataclasses.dataclass(slots=True, weakref_slot=True, kw_only=True)
class BusinessModel:
    op: str
    value: decimal.Decimal
    id: int | None = None
    created_at: datetime.datetime | None = None
    

codec = typelib.codec(BusinessModel)
instance = codec.decode(b'{"op":"add","value":"1.0"}')
print(instance)
#> BusinessModel(op='add', value=decimal.Decimal('1.0'), id=None, created_at=None)
encoded = codec.encode(instance)
print(encoded)
#> b'{"op":"add","value":"1.0","id":null,"created_at":null}'

/// tip Looking for more? Check out our [API Reference][typelib] for the high-level API. ///

Where: At the Edges of Your Code

You can integrate this library at the "edges" of your code - e.g., at the integration points between your application and your client or you application and your data-store:

from __future__ import annotations

import dataclasses
import datetime
import decimal
import operator
import random

import typelib


class ClientRPC:
    def __init__(self):
        self.codec = typelib.codec(BusinessModel)

    def call(self, inp: bytes) -> bytes:
        model = self.receive(inp)
        done = self.op(model)
        return self.send(done)

    @staticmethod
    def op(model: BusinessModel) -> BusinessModel:
        op = getattr(operator, model.op)
        return dataclasses.replace(
            model,
            value=op(model.value, model.value),
            id=random.getrandbits(64),
            created_at=datetime.datetime.now(tz=datetime.UTC)
        )

    def send(self, model: BusinessModel) -> bytes:
        return self.codec.encode(model)

    def receive(self, data: bytes) -> BusinessModel:
        return self.codec.decode(data)


@dataclasses.dataclass(slots=True, weakref_slot=True, kw_only=True)
class BusinessModel:
    op: str
    value: decimal.Decimal
    id: int | None = None
    created_at: datetime.datetime | None = None

Where: Between Layers in Your Code

You can integrate this library to ease the translation of one type to another:

from __future__ import annotations

import dataclasses
import datetime
import decimal
import typing as t


import typelib

@dataclasses.dataclass(slots=True, weakref_slot=True, kw_only=True)
class BusinessModel:
    op: str
    value: decimal.Decimal
    id: int | None = None
    created_at: datetime.datetime | None = None
    

class ClientRepr(t.TypedDict):
    op: str
    value: str
    id: str | None
    created_at: datetime.datetime | None


business_codec = typelib.codec(BusinessModel)
client_codec = typelib.codec(ClientRepr)
# Initialize your business model directly from your input.
instance = business_codec.decode(
   b'{"op":"add","value":"1.0","id":"10","created_at":"1970-01-01T00:00:00+0000}'
)
print(instance)
#> BusinessModel(op='add', value=Decimal('1.0'), id=10, created_at=datetime.datetime(1970, 1, 1, 0, 0, fold=1, tzinfo=Timezone('UTC')))
# Encode your business model into the format defined by your ClientRepr.
encoded = client_codec.encode(instance)
print(encoded)
#> b'{"op":"add","value":"1.0","id":"10","created_at":"1970-01-01T00:00:00+00:00"}'

/// tip There's no need to initialize your ClientRepr instance to leverage its codec, as long as:

  1. The instance you pass in has the same overlap of required fields.
  2. The values in the overlapping fields can be translated to the target type. ///

Why typelib

typelib provides a simple, non-invasive API to make everyday data wrangling in your production applications easy and reliable.

We DO

  1. Provide an API for marshalling and unmarshalling data based upon type annotations.
  2. Provide an API for integrating our marshalling with over-the-wire serialization and deserialization.
  3. Provide fine-grained, high-performance, runtime introspection of Python types.
  4. Provide future-proofing to allow for emerging type annotation syntax.

We DON'T

  1. Require you to inherit from a custom base class.
  2. Require you to use custom class decorators.
  3. Rely upon generated code.

How It Works

typelib's implementation is unique among runtime type analyzers - we use an iterative, graph-based resolver to build a predictable, static ordering of the types represented by an annotation. We have implemented our type-resolution algorithm in isolation from our logic for marshalling and unmarshalling as a simple iterative loop, making the logic simple to reason about.

/// tip Read a detailed discussion here. ///

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

typelib-0.1.5.tar.gz (46.0 kB view details)

Uploaded Source

Built Distribution

typelib-0.1.5-py3-none-any.whl (51.3 kB view details)

Uploaded Python 3

File details

Details for the file typelib-0.1.5.tar.gz.

File metadata

  • Download URL: typelib-0.1.5.tar.gz
  • Upload date:
  • Size: 46.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for typelib-0.1.5.tar.gz
Algorithm Hash digest
SHA256 4d12208042ef3ee45cce5d6498a2478d1e240456e69c19719695f4daa6d3f914
MD5 de17a0072f87d1c472df2b09466086b4
BLAKE2b-256 dcd0a2e68bd1e7950c8ef724b5d6f53727931a1919c09246d6459d398e4b6e0d

See more details on using hashes here.

Provenance

The following attestation bundles were made for typelib-0.1.5.tar.gz:

Publisher: publish.yml on seandstewart/python-typelib

Attestations:

File details

Details for the file typelib-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: typelib-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 51.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for typelib-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2bef6d070e4ea955ac23cd4bfb45338f7b2b2d1b1d0c9a534b3e3c10bc239738
MD5 8d0106b775a1d72a88971d5a82406119
BLAKE2b-256 1d96294d76a2502a8f80d1a598dd61da960b2191ac7b49016b15e7470adacaa8

See more details on using hashes here.

Provenance

The following attestation bundles were made for typelib-0.1.5-py3-none-any.whl:

Publisher: publish.yml on seandstewart/python-typelib

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page