Skip to main content

Typical: Python's Typing Toolkit.

Project description

typical: Python's Typing Toolkit

image image image image Test & Lint Coverage Code style: black Netlify Status

How Typical

Introduction

Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types, PEP 484 Type Hints, and custom user-defined data-types.

Typical is fully compliant with the following Python Typing PEPs:

It provides a high-level Protocol API, Functional API, and Object API to suit most any occasion.

Getting Started

Installation is as simple as pip install -U typical.

Help

The latest documentation is hosted at python-typical.org.

Starting with version 2.0, All documentation is hand-crafted markdown & versioned documentation can be found at typical's Git Repo. (Versioned documentation is still in-the-works directly on our domain.)

A Typical Use-Case

The decorator that started it all:

typic.al(...)

import typic


@typic.al
def hard_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

hard_math(1, "3")
#> 4


@typic.al(strict=True)
def strict_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

strict_math(1, 2, 3, "4")
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <'4'> fails constraints: (type=int, nullable=False, coerce=False)
  

Typical has both a high-level Object API and high-level Functional API. In general, any method registered to one API is also available to the other.

The Protocol API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
protocol = typic.protocol(Tweeter)

t = protocol.transmute(json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(protocol.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

protocol.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Functional API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'

t = typic.transmute(Tweeter, json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(typic.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

typic.validate(Tweeter, {"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Object API

from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@typic.klass
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]
    

json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
t = Tweeter.transmute(json)

print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(t.tojson())
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

Tweeter.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

Changelog

See our Releases.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

typical-2.4.1.tar.gz (87.1 kB view details)

Uploaded Source

Built Distribution

typical-2.4.1-py3-none-any.whl (104.3 kB view details)

Uploaded Python 3

File details

Details for the file typical-2.4.1.tar.gz.

File metadata

  • Download URL: typical-2.4.1.tar.gz
  • Upload date:
  • Size: 87.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.0 CPython/3.7.11 Linux/5.8.0-1036-azure

File hashes

Hashes for typical-2.4.1.tar.gz
Algorithm Hash digest
SHA256 46cd63710d0cfb706660d95f2b13209820f65c97b5987b12943175e680db7c2b
MD5 d1bdd4419408f24036c2d343af1ceb8e
BLAKE2b-256 aedea71ff4494877852030efdd7117c24ba4c7409584e3ea29dad4f057fd4a08

See more details on using hashes here.

File details

Details for the file typical-2.4.1-py3-none-any.whl.

File metadata

  • Download URL: typical-2.4.1-py3-none-any.whl
  • Upload date:
  • Size: 104.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.0 CPython/3.7.11 Linux/5.8.0-1036-azure

File hashes

Hashes for typical-2.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b61e2f39559357df8db175b2d0eca3029705ee07dc0b95cd9eac60f778350342
MD5 ace1ef1a747c12e71c9f010472585769
BLAKE2b-256 d246e580b58387e294e01608308961d18a7d58a2136ce9f6be5ec11face6f11b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page