Skip to main content

Typical: Python's Typing Toolkit.

Project description

typical: Python's Typing Toolkit

image image image image Test & Lint Coverage Code style: black Netlify Status

How Typical

Introduction

Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types, PEP 484 Type Hints, and custom user-defined data-types.

Typical is fully compliant with the following Python Typing PEPs:

It provides a high-level Protocol API, Functional API, and Object API to suit most any occasion.

Getting Started

Installation is as simple as pip install -U typical.

Help

The latest documentation is hosted at python-typical.org.

Starting with version 2.0, All documentation is hand-crafted markdown & versioned documentation can be found at typical's Git Repo. (Versioned documentation is still in-the-works directly on our domain.)

A Typical Use-Case

The decorator that started it all:

typic.al(...)

import typic


@typic.al
def hard_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

hard_math(1, "3")
#> 4


@typic.al(strict=True)
def strict_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

strict_math(1, 2, 3, "4")
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <'4'> fails constraints: (type=int, nullable=False, coerce=False)
  

Typical has both a high-level Object API and high-level Functional API. In general, any method registered to one API is also available to the other.

The Protocol API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
protocol = typic.protocol(Tweeter)

t = protocol.transmute(json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(protocol.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

protocol.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Functional API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'

t = typic.transmute(Tweeter, json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(typic.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

typic.validate(Tweeter, {"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Object API

from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@typic.klass
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]
    

json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
t = Tweeter.transmute(json)

print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(t.tojson())
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

Tweeter.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

Changelog

See our Releases.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

typical-2.6.2.tar.gz (89.6 kB view details)

Uploaded Source

Built Distribution

typical-2.6.2-py3-none-any.whl (107.1 kB view details)

Uploaded Python 3

File details

Details for the file typical-2.6.2.tar.gz.

File metadata

  • Download URL: typical-2.6.2.tar.gz
  • Upload date:
  • Size: 89.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.0 CPython/3.7.11 Linux/5.8.0-1039-azure

File hashes

Hashes for typical-2.6.2.tar.gz
Algorithm Hash digest
SHA256 25d21a65a0ef0b0a63eac258032ebd30ca43523dee53a0541bf23191f2fc7261
MD5 ff2d0fc02513d2330ece53a6a5e3e4a4
BLAKE2b-256 c6ccf55873e23539f07dcc1b1acb8af3e9cc28442f01c3bea5e3595ff4b89f99

See more details on using hashes here.

File details

Details for the file typical-2.6.2-py3-none-any.whl.

File metadata

  • Download URL: typical-2.6.2-py3-none-any.whl
  • Upload date:
  • Size: 107.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.0 CPython/3.7.11 Linux/5.8.0-1039-azure

File hashes

Hashes for typical-2.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 198160fe0fbe782907bf46cb33de05af4632958f90046f08fd918ecff6668649
MD5 be36d40353f303961fc6059bc0deeb01
BLAKE2b-256 0b38c412623c32861a72f9c67e6bcbfc06fb40463235f44b56ff7dd4109f54fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page