Skip to main content

Typical: Python's Typing Toolkit.

Project description

typical: Python's Typing Toolkit

image image image image Test & Lint Coverage Code style: black Netlify Status

How Typical

Introduction

Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types, PEP 484 Type Hints, and custom user-defined data-types.

Typical is fully compliant with the following Python Typing PEPs:

It provides a high-level Protocol API, Functional API, and Object API to suit most any occasion.

Getting Started

Installation is as simple as pip install -U typical.

Help

The latest documentation is hosted at python-typical.org.

Starting with version 2.0, All documentation is hand-crafted markdown & versioned documentation can be found at typical's Git Repo. (Versioned documentation is still in-the-works directly on our domain.)

A Typical Use-Case

The decorator that started it all:

typic.al(...)

import typic


@typic.al
def hard_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

hard_math(1, "3")
#> 4


@typic.al(strict=True)
def strict_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

strict_math(1, 2, 3, "4")
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <'4'> fails constraints: (type=int, nullable=False, coerce=False)
  

Typical has both a high-level Object API and high-level Functional API. In general, any method registered to one API is also available to the other.

The Protocol API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
protocol = typic.protocol(Tweeter)

t = protocol.transmute(json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(protocol.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

protocol.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Functional API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'

t = typic.transmute(Tweeter, json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(typic.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

typic.validate(Tweeter, {"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Object API

from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@typic.klass
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]
    

json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
t = Tweeter.transmute(json)

print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(t.tojson())
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

Tweeter.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

Changelog

See our Releases.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

typical-2.7.1.tar.gz (89.5 kB view details)

Uploaded Source

Built Distribution

typical-2.7.1-py3-none-any.whl (106.3 kB view details)

Uploaded Python 3

File details

Details for the file typical-2.7.1.tar.gz.

File metadata

  • Download URL: typical-2.7.1.tar.gz
  • Upload date:
  • Size: 89.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.7.12 Linux/5.8.0-1041-azure

File hashes

Hashes for typical-2.7.1.tar.gz
Algorithm Hash digest
SHA256 fd6030788be4bb2e26974826447108a43106b68765d3db6a61027e3ddc672258
MD5 432fc412b1732888d804ae6501273e48
BLAKE2b-256 613c9d7049b1e150c3b5d31377ada38d3cea75d647b91a2f9a34dfd40df2563d

See more details on using hashes here.

File details

Details for the file typical-2.7.1-py3-none-any.whl.

File metadata

  • Download URL: typical-2.7.1-py3-none-any.whl
  • Upload date:
  • Size: 106.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.7.12 Linux/5.8.0-1041-azure

File hashes

Hashes for typical-2.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6f97c5244a790cb58fc9b5c7f5432c35fa6b21fd9caaaa2aaa045a202a87bdca
MD5 45c093c731ac103bb828f2c710f06c91
BLAKE2b-256 675060a8459999d3bae318521aff34204a635966d983cabe5222ecf9b47bb93d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page