Skip to main content

Typical: Python's Typing Toolkit.

Project description

typical: Python's Typing Toolkit

image image image image Test & Lint Coverage Code style: black Netlify Status

How Typical

Introduction

Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types, PEP 484 Type Hints, and custom user-defined data-types.

Typical is fully compliant with the following Python Typing PEPs:

It provides a high-level Protocol API, Functional API, and Object API to suit most any occasion.

Getting Started

Installation is as simple as pip install -U typical.

Help

The latest documentation is hosted at python-typical.org.

Starting with version 2.0, All documentation is hand-crafted markdown & versioned documentation can be found at typical's Git Repo. (Versioned documentation is still in-the-works directly on our domain.)

A Typical Use-Case

The decorator that started it all:

typic.al(...)

import typic


@typic.al
def hard_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

hard_math(1, "3")
#> 4


@typic.al(strict=True)
def strict_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

strict_math(1, 2, 3, "4")
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <'4'> fails constraints: (type=int, nullable=False, coerce=False)
  

Typical has both a high-level Object API and high-level Functional API. In general, any method registered to one API is also available to the other.

The Protocol API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
protocol = typic.protocol(Tweeter)

t = protocol.transmute(json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(protocol.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

protocol.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Functional API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'

t = typic.transmute(Tweeter, json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(typic.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

typic.validate(Tweeter, {"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Object API

from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@typic.klass
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]
    

json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
t = Tweeter.transmute(json)

print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(t.tojson())
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

Tweeter.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

Changelog

See our Releases.

Project details


Release history Release notifications | RSS feed

This version

2.7.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

typical-2.7.2.tar.gz (89.6 kB view details)

Uploaded Source

Built Distribution

typical-2.7.2-py3-none-any.whl (106.5 kB view details)

Uploaded Python 3

File details

Details for the file typical-2.7.2.tar.gz.

File metadata

  • Download URL: typical-2.7.2.tar.gz
  • Upload date:
  • Size: 89.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.7.12 Linux/5.8.0-1042-azure

File hashes

Hashes for typical-2.7.2.tar.gz
Algorithm Hash digest
SHA256 1dd39be7711496ed0ee9d97bc0d3de3ff438b2ed75ab92106143a93f4d45ab41
MD5 b72658909a8c0137f0f417ba8baf8db9
BLAKE2b-256 888ea41ebbda7f66239c35e26599a9b691e59f46bc248fdd591614869aca69cb

See more details on using hashes here.

File details

Details for the file typical-2.7.2-py3-none-any.whl.

File metadata

  • Download URL: typical-2.7.2-py3-none-any.whl
  • Upload date:
  • Size: 106.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.7.12 Linux/5.8.0-1042-azure

File hashes

Hashes for typical-2.7.2-py3-none-any.whl
Algorithm Hash digest
SHA256 28fd6ba8b1dbd08dc4c848fc5d15643224848404c1612808d03bed769b2b4465
MD5 f0c7440a19b30b8b273fb23b9b2cf02a
BLAKE2b-256 1b4fe9d37e75f46762a9a171b84107dd75796cc28eed6edb0f628c7fd99cb0c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page