Skip to main content

Typical: Python's Typing Toolkit.

Project description

typical: Python's Typing Toolkit

image image image image Test & Lint Coverage Code style: black Netlify Status

How Typical

Introduction

Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types, PEP 484 Type Hints, and custom user-defined data-types.

Typical is fully compliant with the following Python Typing PEPs:

It provides a high-level Protocol API, Functional API, and Object API to suit most any occasion.

Getting Started

Installation is as simple as pip install -U typical.

Help

The latest documentation is hosted at python-typical.org.

Starting with version 2.0, All documentation is hand-crafted markdown & versioned documentation can be found at typical's Git Repo. (Versioned documentation is still in-the-works directly on our domain.)

A Typical Use-Case

The decorator that started it all:

typic.al(...)

import typic


@typic.al
def hard_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

hard_math(1, "3")
#> 4


@typic.al(strict=True)
def strict_math(a: int, b: int, *c: int) -> int:
    return a + b + sum(c)

strict_math(1, 2, 3, "4")
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <'4'> fails constraints: (type=int, nullable=False, coerce=False)
  

Typical has both a high-level Object API and high-level Functional API. In general, any method registered to one API is also available to the other.

The Protocol API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
protocol = typic.protocol(Tweeter)

t = protocol.transmute(json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(protocol.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

protocol.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Functional API

import dataclasses
from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@dataclasses.dataclass # or typing.TypedDict or typing.NamedTuple or annotated class...
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]


json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'

t = typic.transmute(Tweeter, json)
print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(typic.tojson(t))
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

typic.validate(Tweeter, {"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Tweeter.id: value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

The Object API

from typing import Iterable

import typic


@typic.constrained(ge=1)
class ID(int):
    ...


@typic.constrained(max_length=280)
class Tweet(str):
    ...


@typic.klass
class Tweeter:
    id: ID
    tweets: Iterable[Tweet]
    

json = '{"id":1,"tweets":["I don\'t understand Twitter"]}'
t = Tweeter.transmute(json)

print(t)
#> Tweeter(id=1, tweets=["I don't understand Twitter"])

print(t.tojson())
#> '{"id":1,"tweets":["I don\'t understand Twitter"]}'

Tweeter.validate({"id": 0, "tweets": []})
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)

Changelog

See our Releases.

Project details


Release history Release notifications | RSS feed

This version

2.7.8

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

typical-2.7.8.tar.gz (90.4 kB view details)

Uploaded Source

Built Distribution

typical-2.7.8-py3-none-any.whl (107.7 kB view details)

Uploaded Python 3

File details

Details for the file typical-2.7.8.tar.gz.

File metadata

  • Download URL: typical-2.7.8.tar.gz
  • Upload date:
  • Size: 90.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.7.12 Linux/5.8.0-1042-azure

File hashes

Hashes for typical-2.7.8.tar.gz
Algorithm Hash digest
SHA256 2689158432e2f05d3e60dacd898a77f427f13c22a072d5edf8b4f4627fcf5f03
MD5 6a101d64444f29fe36c998010a5a6bb7
BLAKE2b-256 375cfa5a209b655e353a7ed6cc5e18b279e98be90f30c7ecb2b66d940ac72f76

See more details on using hashes here.

File details

Details for the file typical-2.7.8-py3-none-any.whl.

File metadata

  • Download URL: typical-2.7.8-py3-none-any.whl
  • Upload date:
  • Size: 107.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.7.12 Linux/5.8.0-1042-azure

File hashes

Hashes for typical-2.7.8-py3-none-any.whl
Algorithm Hash digest
SHA256 1d481ee333aebe683c62e2c2bf3ce06613861430345be1964d3bf86f3490d34c
MD5 99a947f2c12279e94fefb553fc56a28c
BLAKE2b-256 6d37cf4f75ce55d05f6c64756c46139136e701b47ffb33f352f280dd541a7a12

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page