Skip to main content

uData content recommendations bridge

Project description

udata-recommendations

This plugin acts as a bridge between uData and a recommendation system.

In our case (data.gouv.fr), it's a set of scripts living here https://github.com/etalab/piwik-covisits.

Recommendations are stored on datasets. Recommendations can come from various sources and are stored in a descending order, according to the provided score (from 1 to 100). The top recommendations are displayed at the bottom on the dataset page.

Compatibility

udata-recommendations requires Python 3.7+ and uData.

Installation

Install uData.

Remain in the same virtual environment (for Python).

Install udata-recommendations:

pip install udata-recommendations

Modify your local configuration file of udata (typically, udata.cfg) as following:

PLUGINS = ['recommendations']
RECOMMENDATIONS_SOURCES = {
    'source-name': 'https://path/to/recommendations.json',
    'other-source': 'https://path/to/other/recommendations.json',
}
RECOMMENDATIONS_NB_RECOMMENDATIONS = 4
  • RECOMMENDATIONS_SOURCES: A key-value dictionary of recommendation sources and URLs to fetch. Default: {}
  • RECOMMENDATIONS_NB_RECOMMENDATIONS: The maximum number of recommendations to display on the dataset page. Default: 4

Usage

Adding recommendations

You can fetch and store recommendations as a task, using your configuration in RECOMMENDATIONS_SOURCES, on a schedule if needed. By default, previous recommendations are cleaned before the importing new ones, but you're in control.

udata job run recommendations-add
# Don't clean each source before importing new recommendations
udata job run recommendations-add should_clean=false

Deleting recommendations

To clean all recommendations, you can run the following task.

udata job run recommendations-clean

Expectations

This plugin expects the following format to provide datasets recommendations:

[
  {
    "id": "dataset-id",
    "recommendations": [
      {
        "id": "dataset-slug-1",
        "score": 100
      },
      {
        "id": "5ef1fe80f50446b8f41ba691",
        "score": 1
      }
    ]
  },
  {
    "id": "dataset-id2",
    "recommendations": [
      {
        "id": "5ef1fe80f50446b8f41ba691",
        "score": 50
      }
    ]
  }
]

Dataset IDs can be IDs or slugs. Scores should be between 1 and 100, inclusive. You can validate your JSON using a JSON Schema.

Changelog

Current (in progress)

  • Update Matomo content tracking data-attributes #263

3.1.4 (2023-03-07)

  • Update and compile translations #261 #262

3.1.3 (2023-03-02)

  • Recommendations for new dataset page #256

3.1.2 (2022-12-15)

  • Update dataset and reuse recommendations to match new udata-front layout 207

3.1.1 (2022-09-01)

  • Replace mongo legacy image in CI #226
  • Store unique recommendations in extras #239

3.1.0 (2021-09-16)

  • Change udata-gouvfr dependency to udata-front following renaming #188

3.0.0 (2021-08-12)

  • Ensure compatibility with udata3 by changing imports and style #183

2.2.0 (2020-11-30)

  • Add reuses support #153

2.1.1 (2020-10-16)

  • Ignore recommendation of dataset itself #147

2.1.0 (2020-08-25)

  • Add score to recommendations and support multiple recommendation sources #142

2.0.0 (2020-03-11)

  • udata 2.0 / Python 3 support #95
  • Support new hooks format #96

1.0.1 (2018-08-03)

  • Nothing yet

1.0.0 (2018-06-06)

  • Allow slug instead of id for datasets #8
  • Initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

udata_recommendations-3.1.5.dev748-py2.py3-none-any.whl (14.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file udata_recommendations-3.1.5.dev748-py2.py3-none-any.whl.

File metadata

  • Download URL: udata_recommendations-3.1.5.dev748-py2.py3-none-any.whl
  • Upload date:
  • Size: 14.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.9.6 requests/2.24.0 setuptools/66.1.1 requests-toolbelt/0.10.1 tqdm/4.65.0 CPython/3.7.6

File hashes

Hashes for udata_recommendations-3.1.5.dev748-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9d7289791941175e38aeb387f1f7ae8e211095e94d30061159fc88d49c37052a
MD5 eae969a7565d9b134d1a08a7d6b86ada
BLAKE2b-256 9467dc54e767cbda00a90f7d05e2c146e8c042a902a309bbbf35cb50c6542d99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page