Skip to main content

Implementation of Umbral proxy reencryption algorithm

Project description

Python bindings for umbral-pre

pypi package Docs License

This repo contains the Python bindings for the main Rust project.

Build

You will need to have setuptools-rust installed. Then, for development you can just do pip install -e . as usual.

Building Linux wheels must be done via Docker (makefile under construction).

$ docker pull quay.io/pypa/manylinux2014_x86_64
$ docker run --rm -v `pwd`/..:/io quay.io/pypa/manylinux2014_x86_64 /io/umbral-pre-python/build-wheels.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

umbral_pre-0.8.0.tar.gz (21.1 kB view details)

Uploaded Source

Built Distributions

umbral_pre-0.8.0-cp311-cp311-win_amd64.whl (340.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

umbral_pre-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl (464.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

umbral_pre-0.8.0-cp310-cp310-win_amd64.whl (340.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

umbral_pre-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl (464.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

umbral_pre-0.8.0-cp39-cp39-win_amd64.whl (340.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

umbral_pre-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl (464.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

umbral_pre-0.8.0-cp38-cp38-win_amd64.whl (340.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

umbral_pre-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl (463.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

umbral_pre-0.8.0-cp37-cp37m-win_amd64.whl (340.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

umbral_pre-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (465.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file umbral_pre-0.8.0.tar.gz.

File metadata

  • Download URL: umbral_pre-0.8.0.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for umbral_pre-0.8.0.tar.gz
Algorithm Hash digest
SHA256 a2f674d2a0c4f58c6c56334b5464fa094e67d0a5f85fd3b780a7fb414499c59b
MD5 f42c8f41955b8dc887d33944e185821a
BLAKE2b-256 d6089ed939fe627e6a0577a48cf6ad372eb8e0c085960d9375ed373e1f315cd1

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ec5945d648164bb58c449b60948d9f7e7ab0bdd509d0ce372af2f7a100826c34
MD5 0ea9e31882c424dd2789f1469500cba5
BLAKE2b-256 c8e053e84e5b9318045980040803dda6514accaea14b080171e3e68604daf04e

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99b53a78d2514ea350653fa46bc708d59d2730d0e59d237210954c698fb5fd13
MD5 0f7bd75325815ff2ee5d705a33dbeddd
BLAKE2b-256 1f1d721c236cd41b1f4150c28c16d6b48ed415bea2618524568cb011b85b5c74

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d99ca1d95ed692a6fb600ecc03f93342377fc184d4d1c12e7e72be3730d912e5
MD5 59b158a13e9c04b56044f83a689ace52
BLAKE2b-256 3c32e3d3c9c440f833c0881722b22cb5dbfbb65713ec5092284d86af24702929

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2534c09c0ddcbba84ba04ff3d96540566efbe8365ce2b129fbe814e4ad54eee5
MD5 ea6d390a2680fc410a2291bbd37a966f
BLAKE2b-256 c9adb6c3668c81bbe1de8bbe8010ec43912e1403015800a098f6ebab3ba7f4fb

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8bfbfc5c688887a3052af37d7ce39fc62ba02602567e5974bc5fc7384a38a92d
MD5 a6f6d3a732e3837462d0efb6dba4d707
BLAKE2b-256 8ef74d20612552bd77506a228c29b18977d1557b24c3c8e7f3603493d697df3c

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6fba60609f4004d7bb7c8d467abdbd9ebdcf09d25b403514109e207a17ead2b0
MD5 8add8dcd59373efda5425ce06cf1a3cc
BLAKE2b-256 02b320012cdcef591c9690ce9fbc87d172488fe60ef01d302b468d3d8f50fa90

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 340.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for umbral_pre-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 381e73e7773703f333f6f85a0c37e465702127c6985f5fa0d950c3a6c1c529ec
MD5 af7daa850ea16963d7069351587868fd
BLAKE2b-256 c1febea7074a6f230c6dfbc938d6ce9850fac96b4baf4e731e8934a232288dea

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d09d5e75005a4c53945820d961d7e72f91f153801854bfecff422ba70abf7bfb
MD5 4fa54143c578a1b643bf86d0ee6f607e
BLAKE2b-256 07fb47b969d7338d70d2fd62979d9ff141704f9f03709af6eaf69dae49f8903c

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c60e28b5f3aa001f02636223422fb64b2cbf7396a04f6e0a8cd839a288e1f88d
MD5 d898cd90b29dd82e05b022ac9b6b55db
BLAKE2b-256 662465d8985d32c65197c7246e919316629dde189a8ef6a720af3e13e9e73db8

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 340.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for umbral_pre-0.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9773cd028dd9c3ad0830d0f7422131c1987c473950e5b88a956216aff4b54134
MD5 8cacc480fd4cfb65148134a598536041
BLAKE2b-256 2792fa0cb4a8e86a0bd6463d6e69b5a4e448cbcf42dd66aeea574d2c020c1bb3

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 484d758bcbcd3a4a6e08d93569c394e9a89955eb2421165a32dd5a40e3723b1c
MD5 dc7a03f820d0457ffc27e19b1fef7dac
BLAKE2b-256 cf523566ca7e64317d42c785f9a1d9df986fb17bd3ba1d3c8912f73ef0415f82

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 349343b7ea40c9e456760248a97062365a32312d2c40b13d377b7b610fc2b82c
MD5 da308947349b5647ed16515460ecd53d
BLAKE2b-256 51eeabaff8ab229302b09fb6a01d283dff6f7077ac78343f7fc2e746417fe7c3

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 51686d678407a6cfd12baf64fda0a054b4a8401973fa35a23439f2a3163e449e
MD5 8f1e288f3baef94135440f3c38bf5bd9
BLAKE2b-256 1f974d063ce650e59c89650c2976a720db9bedabe37f29c63757c949f205dbd6

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f3b82b5e405516c11f7390b4fc20a9368110283978643c35ee6474d2a21b3c3
MD5 ed9c77881548469aca382d070431fa29
BLAKE2b-256 67d6444032395a26e70d2c11155e725f4f990a73d301893d829ce443fe0f81cd

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a6613ba933b21b2e8e67519d4f339fcdb6e8f5622472470dd59ed5a4e592e84
MD5 7614c35fb44053e0c662d030d6d6893e
BLAKE2b-256 e8f3a551a983b5b59979008d769dc585bb6e96ec5466b64b0cf7ac26b1e7f04e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page