Skip to main content

Implementation of Umbral proxy reencryption algorithm

Project description

Python bindings for umbral-pre

pypi package Docs License

This repo contains the Python bindings for the main Rust project.

Build

You will need to have setuptools-rust installed. Then, for development you can just do pip install -e . as usual.

Building Linux wheels must be done via Docker (makefile under construction).

$ docker pull quay.io/pypa/manylinux2014_x86_64
$ docker run --rm -v `pwd`/..:/io quay.io/pypa/manylinux2014_x86_64 /io/umbral-pre-python/build-wheels.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

umbral_pre-0.8.1.tar.gz (21.1 kB view details)

Uploaded Source

Built Distributions

umbral_pre-0.8.1-cp311-cp311-win_amd64.whl (342.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

umbral_pre-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.1-cp311-cp311-macosx_10_9_x86_64.whl (467.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

umbral_pre-0.8.1-cp310-cp310-win_amd64.whl (342.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

umbral_pre-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl (467.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

umbral_pre-0.8.1-cp39-cp39-win_amd64.whl (342.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

umbral_pre-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl (467.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

umbral_pre-0.8.1-cp38-cp38-win_amd64.whl (342.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

umbral_pre-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl (466.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

umbral_pre-0.8.1-cp37-cp37m-win_amd64.whl (342.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

umbral_pre-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

umbral_pre-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (466.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file umbral_pre-0.8.1.tar.gz.

File metadata

  • Download URL: umbral_pre-0.8.1.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for umbral_pre-0.8.1.tar.gz
Algorithm Hash digest
SHA256 86f65bd2fbadbff7d6a57323a957ee357cfb751a6f5f4b69bb03854bf5726c34
MD5 901c5e56674301321a11ec6bf3c26e07
BLAKE2b-256 4c8665c5fbc9e65bbe59006b7b9c4deec1dd3488ddd8fcf503ececcf75c04ec3

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 328c95addeac2d1de1704c0126e542ad786ccabebbd943e6b51e28852053f88b
MD5 f28c77b96148bee5e7b3f3032913316f
BLAKE2b-256 92c1bcec0311a9bd369a32d44bde5e600489e30fa61933458655db7aa1c934ae

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05a7b0fdb7d24c6b53bb659eea77c242205decb8af06005b8e69c90035c60b96
MD5 5a9ac32e033052e280b38f6c672dea26
BLAKE2b-256 895bf49fdadbfe5451735dba25739a51c85e82c2da3a585369884fe3c1e20e65

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ef9dcbd2d3ac3158abcc7f23cd1f8997ff3dc0e7fefbc1dacd025c510fa004d
MD5 36b3d139a4cd6cbb40420be9dbf24531
BLAKE2b-256 e03f7b92821a741a55bbe3c2abd4bb397ba4e9bb55eba683de804f15eb75e3d9

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d75349a049882dbcd50f1d3323a696d344ee67ecd811f3dc95157b99aa675b2a
MD5 0d19495b94f58a5a85d79aeba89394e3
BLAKE2b-256 0f123ea279857e6d1ee8dd10f8f39ba80345870ee7295d6d67b39c8a902170f1

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db9b1b8c44df5555c3da54d414983a80efb9c7d5355aa49678759e892cbcc27b
MD5 b08c18d1f85f99e7dd69be32feb444e8
BLAKE2b-256 175e8907012299afcf826ee89a1a5288ec76e1327a7adc09aaa4056abe604958

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7faa72e2bdca803ef5ba494ef64b12269376040f5c3d226a6f980d5bf443b74b
MD5 29bdb8a918567fc9a21a5395d39bda58
BLAKE2b-256 cfd543adb9635e231ba8c36fe23c289b05b691a0257cb635658e01b730d9aaa8

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 342.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for umbral_pre-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 901a42d60f0c53bbccd0d572f415f9f95719f7fda90d6ae3cbf0040ac8b10769
MD5 ecd8a22f511ded95255e817720ba8650
BLAKE2b-256 100f03e11dc53d3cbf5cc5a6c5ea0f2cf81a3cc9b16dec4ee4c31eacd5cfa540

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f56bbbe153cace0660a39dda7e92e9e2111110de382153f71c4017a87e735def
MD5 3d0532ac49bb0321337abf4d5043d988
BLAKE2b-256 efd2e1198947e25b9e18b4fe4b3e8098aff2d90e288dd31dd3fdb3dcf0bde3c9

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7bb9627d130b157f6037633958475380061de008f7d973d673df33480119f24
MD5 9972c68491732671f0384fe04bc6c59f
BLAKE2b-256 63746231fb915d5358d41f5fed9a0f09adfe2e385f1b51149a553a5418025d71

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 342.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for umbral_pre-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 20507fbca356befcdb295588430055bfa8a7f73a8d0ce5f7d01811a07e518326
MD5 daf5b0e711c6f573203afad36143c97d
BLAKE2b-256 7d8f0287d9019e7d6641b255329a9859a8385eabf808a2868fcec34c54c258c3

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf822662b91cde9b74ed6c3d716aeddcca9e4f9a9ae8051934687757f8cb4b32
MD5 072a782dc012d6b3571bf3cb20a0e27d
BLAKE2b-256 a330425c5428e5cb4ce46cc038c3aa9495ad186019d6d4678f36f4bef8a2f18e

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b79d6058ce9e7afca7ce8314659fc89b93a174db87d98ae64bb442d8edc440f
MD5 2eb215e4f95f7931512ab7d440fd7adb
BLAKE2b-256 4cd3a3124ed5aead30b0e09133b6687de12327d511b2a7ad6f9b19755bd0ca7e

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f8d619e417a82acdba373658c987539aa728a30e19ddcc48b9e67cfa224385bb
MD5 b2b1e16310502d4037c839c0ac6066ca
BLAKE2b-256 a8460dbff3e0fe22154248448bbc24b3c6901832d903ac5936981e684fb66f0b

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4486a17bf33e65c52b4e7c9176efc2f59b04b79cd491c6d38fea57f2e0b545a2
MD5 6e8be0dda229063657c4ae4d25544545
BLAKE2b-256 cc9bb71714d925efc19f22f2363802a3e78b90edaf807fea702226abeadbc224

See more details on using hashes here.

File details

Details for the file umbral_pre-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08cb076ccce7853538417e8196875d1b566a352b20039c6f857e4a024df4e291
MD5 d4c4a121ef2ff82b22b9681546ff31db
BLAKE2b-256 fad2185c9009ef1ea9d64d99fb0598b7c8e0e529bc28b629a8ea786810aa5560

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page