Skip to main content

Implementation of Umbral proxy reencryption algorithm

Project description

Python bindings for umbral-pre

pypi package Docs License

This repo contains the Python bindings for the main Rust project.

Build

You will need to have setuptools-rust installed. Then, for development you can just do pip install -e . as usual.

Building Linux wheels must be done via Docker (makefile under construction).

$ docker pull quay.io/pypa/manylinux2014_x86_64
$ docker run --rm -v `pwd`/..:/io quay.io/pypa/manylinux2014_x86_64 /io/umbral-pre-python/build-wheels.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

umbral_pre-0.9.0.tar.gz (21.4 kB view details)

Uploaded Source

Built Distributions

umbral_pre-0.9.0-cp311-cp311-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

umbral_pre-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.0-cp311-cp311-macosx_10_9_x86_64.whl (490.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

umbral_pre-0.9.0-cp310-cp310-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

umbral_pre-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl (490.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

umbral_pre-0.9.0-cp39-cp39-win_amd64.whl (360.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

umbral_pre-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl (491.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

umbral_pre-0.9.0-cp38-cp38-win_amd64.whl (361.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

umbral_pre-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl (491.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

umbral_pre-0.9.0-cp37-cp37m-win_amd64.whl (361.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

umbral_pre-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (491.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file umbral_pre-0.9.0.tar.gz.

File metadata

  • Download URL: umbral_pre-0.9.0.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.0.tar.gz
Algorithm Hash digest
SHA256 a8df30e70149362d0a12aae3b2d6a89f5539d0a9188435eeef068ecbc891060c
MD5 93cc249a3f5a1995baac23f0e85a4329
BLAKE2b-256 c1a60589cef6f277f2d625c6d1f6e3f83a47ae428c62bea2e71ad9a91c7f344b

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7ca5b43b152125af6f75285a6b8e36347e8c4f6c3847c3cbc79b17e2d18e3e49
MD5 276a8cec2151ce8b6e1eb6b911c26465
BLAKE2b-256 e64354119f1d5be073fd7cfa0aae17e91171ae90c4299ba84f723648c7a6f7ee

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39ab4570b094b06c1587addc345c333dabe7193378d2de2bb981cf05d0cfd50c
MD5 f09b289eeceae1786faebcdce240efdc
BLAKE2b-256 9d323c2d5e51d561a606816382946bd4701f36b96d163de86bfd4cdb1e29f454

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 771c9e9eaf1dbd2edaf13a7b9a059d4a8757055f6e442c887f39a99bc6c63c91
MD5 b0293b81e19d588046aced554604a51a
BLAKE2b-256 4f3c5cf9607656fec03f7ebbcdd87da7e52563161be9296ee5f51b81ff2e34da

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b2d2bb454911b62befa8a5aa7098e39679b3b06ca764173aca39e80bc5cf305e
MD5 11fa9f3dfc013c820f72d01c95f22b3d
BLAKE2b-256 d16521d921968fcf77d05cc53f80434f0c07ecb73aeb290f3e5d6dd5f3e6d5ee

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6c36c35fe12d4edf6df3c7bce0b1d0a9cd52ac7720ad2cfe2c6d8b1b723f997
MD5 f4d82a7d0b3259b734c1698ed731a713
BLAKE2b-256 7cc897d162da03b93d6d5874dc00a23ec074f2e80b67e79906896ad75dc15eaa

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2dc660e81b1e870ef013b611b76f6dcd94a62aa87e7caeaea2f01b9a135a733
MD5 8a5c6d6780b5e3617e3565a3bf8ff4ac
BLAKE2b-256 2c9ffb17c4f7ea00f6796bf0c84b05f74cfe376e3e56abceaf4f0813261dd228

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 360.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3e66710d7afc049f1c3ce8b0b58ae816095cc9b6d09e078ce49cfe62500fdc9b
MD5 0cbfadaf59eaecf2a5000bc4b8530963
BLAKE2b-256 d5cd14325ffade14f7443c158867b7bd9223d623ab36068fdb5e2085fe987c91

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9aa7eec6b9d89b1b67109e7661fa4f465a947d8f73d64e05641bfcd79a9691c
MD5 53edcdf9120453a1cc56e446060cfe9c
BLAKE2b-256 0e81a371782068b17362bbec999c108a431a2ba4531b4612efe93ef5eea404ef

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1b132631f0b726e1f785b05dd8d23873daf9dcb97b24467aa3f6051bb7d0410
MD5 c61acf947fff0d28909bc1565e6867d8
BLAKE2b-256 abb8ca45765f26c5a55698908c2fc82d12ba2ba33cbdad31067cdbf7572aaa20

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 361.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fe1a9da7f97f6f21abc17a5474664e77bc69bd9e9f755f1a76b5568db8499a64
MD5 b266f76939f83fb4441ee70e1f90958a
BLAKE2b-256 5de94ea908ab17864b941187466cbe98fa3390524ff4f40a0f22eb42ce0da680

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3e956de38574323711c3d608002ba7a4b0b1de218a3e6cecea6ba010740ede9
MD5 72ec4a7da9808144d99373fab529536b
BLAKE2b-256 780e865eaad06a9ff39684b26aba39936dda1b70a368d089f3d1fc5cc8f6024d

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08bb6ce47b32984d28b16522b48d2e8d75706ae27b5ed819b6452e4a95733037
MD5 3b755ee0204b8bf134a4a0ba89501352
BLAKE2b-256 c92755397184907f649006526ebe10432e22f465cfb53afe466d00274eea051b

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 289bcc1ad2b248f3f4b8563a78dcc9a400532613554f9ab494cc15b1953928c5
MD5 a0c56641b849181e288b11d1308e7755
BLAKE2b-256 916ef721c34de87afbd489881fae83007f516fe3ed90f0268971f8dee8783aee

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77173d09f190045385add337fbfc97910efa7249664d73bbfddb279ac7979621
MD5 d5d01bf422201c0f3f807cdd4abcbe74
BLAKE2b-256 412c450fc754c2b8a9eabc162b8a47fa7f45fde2a90881c85654c3c531893805

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f5111219c998909c4a865c23c28d467c2bca6a5267c9292c238663c4e9b868b
MD5 4d638a2a427a65b734de4a10047d6b4f
BLAKE2b-256 cb477b702f32f3ffbf2d399b1f8e821b2cabe74150bcb3e35319d73af9873a8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page