Skip to main content

Implementation of Umbral proxy reencryption algorithm

Project description

Python bindings for umbral-pre

pypi package Docs License

This repo contains the Python bindings for the main Rust project.

Build

You will need to have setuptools-rust installed. Then, for development you can just do pip install -e . as usual.

Building Linux wheels must be done via Docker (makefile under construction).

$ docker pull quay.io/pypa/manylinux2014_x86_64
$ docker run --rm -v `pwd`/..:/io quay.io/pypa/manylinux2014_x86_64 /io/umbral-pre-python/build-wheels.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

umbral_pre-0.9.1.tar.gz (21.4 kB view details)

Uploaded Source

Built Distributions

umbral_pre-0.9.1-cp311-cp311-win_amd64.whl (361.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

umbral_pre-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.1-cp311-cp311-macosx_10_9_x86_64.whl (491.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

umbral_pre-0.9.1-cp310-cp310-win_amd64.whl (361.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

umbral_pre-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.1-cp310-cp310-macosx_10_9_x86_64.whl (491.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

umbral_pre-0.9.1-cp39-cp39-win_amd64.whl (361.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

umbral_pre-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl (491.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

umbral_pre-0.9.1-cp38-cp38-win_amd64.whl (362.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

umbral_pre-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl (491.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

umbral_pre-0.9.1-cp37-cp37m-win_amd64.whl (362.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

umbral_pre-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl (491.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file umbral_pre-0.9.1.tar.gz.

File metadata

  • Download URL: umbral_pre-0.9.1.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.1.tar.gz
Algorithm Hash digest
SHA256 c21bf7c4779355a98f2cc9d106d23abd5f74e4bafb817921801637d9118c1e68
MD5 9b595fbce05d022b9725fb0f163ac1fc
BLAKE2b-256 9d0243bfe5e517fc36fe8702f0b07e08e29c7a1e9358728a40cfc60cbab095cb

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ff1ffcaa02761066893e8c53fd45b0fc6c1b76e5a9ee4246b0e35cea8209c764
MD5 ac196aca60ae2086a2eba175ea5924ae
BLAKE2b-256 97d28854770f0f2ba80367e6f43b7e18129f4dcc5867b1fc28576ae761735f27

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f2eddcc1ee3099d486f6bad04bf8df9fe4651a156b94c2dd046a3e58fd5675c
MD5 664520c328d8d3ce63ae0c349726530b
BLAKE2b-256 a476a3e93d54676b9cfd2913d890192ff54a0d9ef04263460d4486262b9001bd

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a603a8c5297498dc6a0d3bb5ac3f092292a5ba6388614f04e2a869a7d4ef2487
MD5 1b9cd0ed81af9f86ff4f07f5e06bba13
BLAKE2b-256 9f65451318488d594e1f7c03234101fecc0b7d18c97a5a9133bf0502bca3d6ca

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 20f0e55287ef9fd8673126d59515847c6b946c24673dccd36ada9eac85bb5d39
MD5 180301dadb7e0cbfd7c10e4637246d7a
BLAKE2b-256 51dcc50a33351f42f7a866dd2b382b105a9b905d8ad512ec34631642dc75eb03

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00e7d0c4580c16584c43f912e9255f59e940d9a2ffa44f23971f8b715dc1545e
MD5 abaff4a4538b6b7ad80579165620afce
BLAKE2b-256 a25ac29959d30048bdbbe6d7418613c2073dd5ce35b6c34936f27ec7ccbcbdfa

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c036ffe2c44966330a7d9b57710dc6983715fdc248206c5aa5c3d325bab3161
MD5 ef4a47c1a2092af6ba82e40164c58d86
BLAKE2b-256 504c05eabda5f8db79fd4bf8ccc56b62c2f41ce634b086a91b7726229159dc66

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 361.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 98ce32e578044053a5677297b33ea9cff88837b9ca46cae4e34c127f7b07867f
MD5 4c262895e3cc9564a5f68e69c8ca02e1
BLAKE2b-256 55dc3b4b457cc9bbc9f6d9a977dcd3d5e8d2e2a2c3ea0484c5842ff84b9427ec

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9127361acd35c1538ac4d95c9e53096207d969549e88496e17c77d1c47518e80
MD5 4c5d830ab82493a73c497f6d5d0f613a
BLAKE2b-256 d33d070329e2522dbd2f2852f7137f525b163ea54c25764e014809b346ce0ace

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 772b5765715b570dd1c77a6bb48bd0e74fc28ea67b65552272b910ca45e31a15
MD5 c4cba4a752ed3eedac4668ddf9a0f361
BLAKE2b-256 1d5302da4d43dbab51f5c8303ea6e8d5715f8360beff84f2dd7fd494861295a3

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 362.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2e271366d7006bc59e22e7c8d88f1c65ec9aba7090103f2a888a08093c9bedf1
MD5 a84f93be1cbea7c3ff46021e9ce5a4b9
BLAKE2b-256 f1e7577c6c3f4d5708a79c76d209e090bdf9b8aed2c80cd498e68d1af8a02fe1

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba5501fdd83ba358be05b0ec2315cbafa0b07d97601b4e460c85b6d5beed824a
MD5 f3002829f4170c21ebf6698e8d8a231e
BLAKE2b-256 1c1f34215afef5e0c05812ce57b0ec49f52fed7de331ea7c4e273c2551cce629

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75de81c14621f90f9476c01a8021cc8f2157b0fc786e384ee2eb88eb05003515
MD5 be83883ef58321a80139f3b577ffb8cd
BLAKE2b-256 e22d741a5bb48fd04cd37b5645c42c0863685cfe7bd634241ff205efe9cbb676

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e7a930d4de4d552b447c1b694e5c478f775b92ebe1a5361bd170d72d533f1877
MD5 22b762871d92a301b3a3b3f31cd18cb3
BLAKE2b-256 7a5c13b4643f46679afab4ac97b66173ddcf8fdccd4f4e137de5ffce159c0104

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba01c330600b421d3de5af40c10d0c893e415a337b48b21e6a44ae1b4042d866
MD5 0365c8f2f524478a57e316b6a68ead6c
BLAKE2b-256 075f94847748900f2008eb6aaf17c283d88cdea5fdac4dc91dbc2746ddaed89f

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69c74761ad09ffb40a1af7d95983244f87f83174c5efb32f939719dd2423d398
MD5 d2481fc24707535f10f4a500feb01240
BLAKE2b-256 9d5ddf155b18056c39067f84cc48d64ef920b8d4db78d95940fdc4620da2dfe2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page