Skip to main content

Implementation of Umbral proxy reencryption algorithm

Project description

Python bindings for umbral-pre

pypi package Docs License

This repo contains the Python bindings for the main Rust project.

Build

You will need to have setuptools-rust installed. Then, for development you can just do pip install -e . as usual.

Building Linux wheels must be done via Docker (makefile under construction).

$ docker pull quay.io/pypa/manylinux2014_x86_64
$ docker run --rm -v `pwd`/..:/io quay.io/pypa/manylinux2014_x86_64 /io/umbral-pre-python/build-wheels.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

umbral_pre-0.9.2.tar.gz (21.4 kB view details)

Uploaded Source

Built Distributions

umbral_pre-0.9.2-cp311-cp311-win_amd64.whl (360.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

umbral_pre-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.2-cp311-cp311-macosx_10_9_x86_64.whl (490.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

umbral_pre-0.9.2-cp310-cp310-win_amd64.whl (360.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

umbral_pre-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.2-cp310-cp310-macosx_10_9_x86_64.whl (490.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

umbral_pre-0.9.2-cp39-cp39-win_amd64.whl (361.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

umbral_pre-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.2-cp39-cp39-macosx_10_9_x86_64.whl (490.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

umbral_pre-0.9.2-cp38-cp38-win_amd64.whl (361.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

umbral_pre-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl (490.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

umbral_pre-0.9.2-cp37-cp37m-win_amd64.whl (361.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

umbral_pre-0.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

umbral_pre-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl (492.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file umbral_pre-0.9.2.tar.gz.

File metadata

  • Download URL: umbral_pre-0.9.2.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.2.tar.gz
Algorithm Hash digest
SHA256 c8de73b76972dabc8a21ae09eb6b0aafc277f9e72a8e94b00e6e7ca9736ecddf
MD5 652ce601d4db9c8afb5c5e9c8a3a0df3
BLAKE2b-256 bf21e04022a707c2d4966d83dbe7c32250f72c5e4f8394849c22deb564155c48

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 60f9187cd34e692e3036524f11bd5e9acf538c77d51078e803942ef2ea00d021
MD5 7bb6f678866fab28f1b28124b4f4d971
BLAKE2b-256 7d3735a32d226b20370a347d1668286cfaeea29aa1f7cdef3a5ef2e6090bc6cb

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d0bc9e33b769930c86a604bcb055970f3eb4ffecd7cbcdd70ed361de19b7bac
MD5 d3d3284cbdbd178a3e2309d47c3b2400
BLAKE2b-256 ba1bcc9a14bc6d28d23799e431fb5178639aa03ad4cb07a55704cdb988284192

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67809f367b6706375b2eed1dc680d66d5b3c08aed049f57ab77f830231dcc0ff
MD5 087ab631a80c20a48bb5381ced49611a
BLAKE2b-256 8bcb43f3c3bf8d3fd2944d0291eb8924472183f541f1200f4d37881ca920dde0

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0e07d2cdcc9de23294df7358d38fa5112e53a3e91a5cf3e951f8664cad448076
MD5 b36c6148d4d888a1bad50e9abce03e76
BLAKE2b-256 b5518b2ef97f744307ea2dc03c05b6c24262e4cf0174322849f1ee4bfd270648

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 287aa701af8d430a21e49e8ee0b493b28ab98d487c68984197c12822d290333d
MD5 2dd38ed338d2c96588931e1743b3d299
BLAKE2b-256 3c5164dab79b68904ea149a5e615cac7dcd8d22c044e30700cd69b42844be023

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5b9a27902546597009d62212756a84e0158079d3aa9a5c9a045918a5f28b92d
MD5 95f661cd0499afd5f20b7ff2d3ed421f
BLAKE2b-256 72e2eed497329f3231f2ea493afe61b651dc3a1818fc48f26ee0dcb780a1b7a5

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.9.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 361.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 76da5865027598ccc20e99c9cc1da8a838d2b3e68474dfd365e7ff997ea696d4
MD5 8fea2e703ae87adb7d83cfcd2a493e4d
BLAKE2b-256 b423ab895dfd40c3c506efab2be1e5a81ae99025a8945a9c7dc707906bd531d3

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 022d76b0b43d97a9ae316ff37d38d95b6e1482a300311e42755a06b868911fc5
MD5 1b6d7a9e979081a77306abd3c593deaa
BLAKE2b-256 47b971a23e7a3f551fb4db4677f677e85320d1ac222e650b191ccd8e23c02761

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7e13a725e2d8656a150e4718cd9182bd3e499d3b21d51e1b947f862d0af0eda
MD5 16273cece809055bb41a69361aa4dbc4
BLAKE2b-256 e8c9a2a2ed7a94d85576e357d6b6ef9094ef5be49e445c16b20a9bad61285f99

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: umbral_pre-0.9.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 361.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for umbral_pre-0.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8ab799cf6c2e6d5df04dc4db5cc4ed09969aa23e5b44c98ebb272f659e3d1776
MD5 452b275cf75fc1b2dc610a1a4364dab8
BLAKE2b-256 cae86321b63ac0ed6ce6a9bb8aebfa702de0ade4aeae4bd0d8de6ec4cf3afd0e

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a863648cf928fa8e5ce447507710498afa6d624d6d533a46139d89cefca97e5
MD5 726efe67d15085c8bacc951cd05ab6b0
BLAKE2b-256 af7468ec0f38f85d1f0967b9a5aa766446fc4e4357620d8fde9ef4e26a1eae4e

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2df32334e55f95ad727d660a7f4fd5c3db6fa190dc1622f73e6b5467364baf44
MD5 e1c14edecd9004e8dd6a8ca96b297a82
BLAKE2b-256 42e916c0b61e44f33168fea86ce3f552240d1a86841670052af7ec7094782da9

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 739b304ad7edad92f7ebeed995b9649629be50c39f0fe8919d49b69609945493
MD5 89fe9009a1f7d2f6a5e379b64859f801
BLAKE2b-256 64dedaa01c0e4aebb189f4e9357aada2df7ad3650d3b128b66abd69c4f8a3947

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a473a03d93e189eb8c565ab45f1c3250151aa210bf64d9cfedeb94a7ddd7999
MD5 13e1cc197755dacd773724ed1db070c3
BLAKE2b-256 f0b80417bcdb8be2ed9eebbef55a3ab5379615f884698c599d37300910a12a1b

See more details on using hashes here.

File details

Details for the file umbral_pre-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for umbral_pre-0.9.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c034c4b591f1a22f909211a10c22d86737cd86fef1d2f867433898241c095cb
MD5 eecec76401d693d405fecf1270e7120c
BLAKE2b-256 b2047b440e2865b828905c4a5963223da9fd249a825c9e8aa213f01ceac62dbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page