Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX

Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI platforms PyPI version

pip install unxt

Documentation

For full documentation see:

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.14.0.tar.gz (534.8 kB view details)

Uploaded Source

Built Distribution

unxt-0.14.0-py3-none-any.whl (41.1 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.14.0.tar.gz.

File metadata

  • Download URL: unxt-0.14.0.tar.gz
  • Upload date:
  • Size: 534.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.14.0.tar.gz
Algorithm Hash digest
SHA256 f8f1595093ed671097ffbdfd3263e0a13f0565992122229ed1997160ac4b3fff
MD5 f9a17d7259d11d1eb11e620e34ae34e9
BLAKE2b-256 ee8ab89273a0b90b2e532332378a55ff715ab3609170ee6a7270e7f122d82164

See more details on using hashes here.

File details

Details for the file unxt-0.14.0-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.14.0-py3-none-any.whl
  • Upload date:
  • Size: 41.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 46396d0122ffdd6eafd1d2dd6876d5211643e648e4620e6116b92835cf4b9822
MD5 c9d939c2cd1c5958b216aa8439cb8ff2
BLAKE2b-256 0dee1ae5ece027bf01aae5b5a5506c25f7149b55cf481cd37913636850ee0dc2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page