Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX

Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI platforms PyPI version

pip install unxt

Documentation

For full documentation see:

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.14.1.tar.gz (534.9 kB view details)

Uploaded Source

Built Distribution

unxt-0.14.1-py3-none-any.whl (41.1 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.14.1.tar.gz.

File metadata

  • Download URL: unxt-0.14.1.tar.gz
  • Upload date:
  • Size: 534.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.14.1.tar.gz
Algorithm Hash digest
SHA256 4d1bf941272ef9e457652d595a2c0dd5e1e5b82a4cfef8cab261642e67dbda89
MD5 305982397b472aebdf6a37cc66dfa9b3
BLAKE2b-256 f11f57367c4fde6c1f73ce11f9e2177d44e52cf5786ed413076bf79c1f948814

See more details on using hashes here.

File details

Details for the file unxt-0.14.1-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.14.1-py3-none-any.whl
  • Upload date:
  • Size: 41.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.14.1-py3-none-any.whl
Algorithm Hash digest
SHA256 841999455259db450bea70fa0897b9b34906b62283596f0d86f0681291da2e63
MD5 372763b2f43c3f84fc9c97f2e73bcfd9
BLAKE2b-256 55de401703ec5800cd702c0e3aa438a9d9fd259c380417058822b446098592f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page