Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX

Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI platforms PyPI version

pip install unxt

Documentation

For full documentation see:

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.15.0.tar.gz (537.6 kB view details)

Uploaded Source

Built Distribution

unxt-0.15.0-py3-none-any.whl (44.9 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.15.0.tar.gz.

File metadata

  • Download URL: unxt-0.15.0.tar.gz
  • Upload date:
  • Size: 537.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.15.0.tar.gz
Algorithm Hash digest
SHA256 0ee2b8ebd0f5f0115946ef7ba302befc9f1331b4ac1ab45e109818b2cfc42514
MD5 47fe2a119334902797948ce35e0de028
BLAKE2b-256 f37d452b9da3752707c266fb6a06ddd5814789ba934d43823b90640d9a60de80

See more details on using hashes here.

File details

Details for the file unxt-0.15.0-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.15.0-py3-none-any.whl
  • Upload date:
  • Size: 44.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.15.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8a665c720c920f3d5e20815858f26ef5965d307a07d5d690d5ca235e0dc458dd
MD5 062a211185b644adc8ce7a1c0a746663
BLAKE2b-256 a9dbf576217bdafde23fa263d5776791ac01e984599de33ce9655397dbc46600

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page