Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX

Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI platforms PyPI version

pip install unxt

Documentation

For full documentation see:

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.15.1.tar.gz (538.1 kB view details)

Uploaded Source

Built Distribution

unxt-0.15.1-py3-none-any.whl (45.8 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.15.1.tar.gz.

File metadata

  • Download URL: unxt-0.15.1.tar.gz
  • Upload date:
  • Size: 538.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.15.1.tar.gz
Algorithm Hash digest
SHA256 e9fa7b41d5afdd3e9823f5cc73250b20d01cc04773600c02ac4db9e6a3d892e7
MD5 b1b967a430b0c48205438add864256f0
BLAKE2b-256 b1bc4fb25624502c450db444637b7229d63c321bf8af8fea8c567dd48e4623f2

See more details on using hashes here.

File details

Details for the file unxt-0.15.1-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.15.1-py3-none-any.whl
  • Upload date:
  • Size: 45.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for unxt-0.15.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8d48bf80ed3c0a8e4b28c0a5f2fa73cab0644fbf7541c4f55a8e216d28688c82
MD5 bd7b54dc7f743b4b4c9e80fd772eac39
BLAKE2b-256 2bf9c8307a965c4eedcd299f493260cdb259e116702400b9396bdda962cf177f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page