Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX

Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI platforms PyPI version

pip install unxt

Documentation

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

codecov Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.16.0.tar.gz (540.4 kB view details)

Uploaded Source

Built Distribution

unxt-0.16.0-py3-none-any.whl (49.8 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.16.0.tar.gz.

File metadata

  • Download URL: unxt-0.16.0.tar.gz
  • Upload date:
  • Size: 540.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for unxt-0.16.0.tar.gz
Algorithm Hash digest
SHA256 be55c8d754c1a92d44457e701ece6e4f9006da10907fc0a1693e4bfe5c81c644
MD5 9c8afde13803d3ba16a927a9edcf2c0f
BLAKE2b-256 086a68bfa4d860456eef304413ef91c0ce69e3110723109d1970a59614888227

See more details on using hashes here.

File details

Details for the file unxt-0.16.0-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.16.0-py3-none-any.whl
  • Upload date:
  • Size: 49.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for unxt-0.16.0-py3-none-any.whl
Algorithm Hash digest
SHA256 80a31b83c16ab8ed2abb91de723c414f249ece25fad0161b78bb801313ed7464
MD5 14bd74ab14882232bd667dfadc30ba52
BLAKE2b-256 c4f93e31f86f7a7d13bc77e352d42e9d8c91a746ddcb9dca0a2abc9f273a3749

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page