Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX


Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI platforms PyPI version

pip install unxt

Documentation

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

codecov Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.18.0.tar.gz (652.7 kB view details)

Uploaded Source

Built Distribution

unxt-0.18.0-py3-none-any.whl (52.4 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.18.0.tar.gz.

File metadata

  • Download URL: unxt-0.18.0.tar.gz
  • Upload date:
  • Size: 652.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unxt-0.18.0.tar.gz
Algorithm Hash digest
SHA256 1b4d7d6b7808c32dd73245c1a5f2124ecc4087b4c1966f7cc003fd1a7f21915a
MD5 0b3cc9431f59347c44c7b14f59205730
BLAKE2b-256 590925fd03e2ec41c06696b3cc4e2f0ceba25d5bb037a2b16150c38cb89c1bca

See more details on using hashes here.

File details

Details for the file unxt-0.18.0-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.18.0-py3-none-any.whl
  • Upload date:
  • Size: 52.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unxt-0.18.0-py3-none-any.whl
Algorithm Hash digest
SHA256 263d901768813a48e688c2ebdf1f918d4468557a05eebff53e19adc5c84527cc
MD5 7993d6d64db78360cd6395e73c155079
BLAKE2b-256 4feb97903434e6b5ca437889d3110871c54cc50853860548b9cc60f0b675c7ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page