Skip to main content

Quantities in JAX

Project description

unxt

Unitful Quantities in JAX


Unxt is unitful quantities and calculations in JAX, built on Equinox and Quax.

Yes, it supports auto-differentiation (grad, jacobian, hessian) and vectorization (vmap, etc).

Installation

PyPI version PyPI platforms

pip install unxt

Documentation

Documentation Status

Quick example

from unxt import Quantity

x = Quantity(jnp.arange(1, 5, dtype=float), "kpc")
print(x)
# Quantity['length'](Array([1., 2., 3., 4.], dtype=float64), unit='kpc')

# Addition / Subtraction
print(x + x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

# Multiplication / Division
print(2 * x)
# Quantity['length'](Array([2., 4., 6., 8.], dtype=float64), unit='kpc')

y = Quantity(jnp.arange(4, 8, dtype=float), "Gyr")

print(x / y)
# Quantity['speed'](Array([0.25      , 0.4       , 0.5       , 0.57142857], dtype=float64), unit='kpc / Gyr')

# Exponentiation
print(x**2)
# Quantity['area'](Array([0., 1., 4., 9.], dtype=float64), unit='kpc2')

# Unit Checking on operations
try:
    x + y
except Exception as e:
    print(e)
# 'Gyr' (time) and 'kpc' (length) are not convertible

unxt is built on quax, which enables custom array-ish objects in JAX. For convenience we use the quaxed library, which is just a quax.quaxify wrapper around jax to avoid boilerplate code.

from quaxed import grad, vmap
import quaxed.numpy as jnp

print(jnp.square(x))
# Quantity['area'](Array([ 1.,  4.,  9., 16.], dtype=float64), unit='kpc2')

print(qnp.power(x, 3))
# Quantity['volume'](Array([ 1.,  8., 27., 64.], dtype=float64), unit='kpc3')

print(vmap(grad(lambda x: x**3))(x))
# Quantity['area'](Array([ 3., 12., 27., 48.], dtype=float64), unit='kpc2')

Since Quantity is parametric, it can do runtime dimension checking!

LengthQuantity = Quantity["length"]
print(LengthQuantity(2, "km"))
# Quantity['length'](Array(2, dtype=int64, weak_type=True), unit='km')

try:
    LengthQuantity(2, "s")
except ValueError as e:
    print(e)
# Physical type mismatch.

Citation

DOI

If you found this library to be useful and want to support the development and maintenance of lower-level code libraries for the scientific community, please consider citing this work.

Development

codecov Actions Status

We welcome contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unxt-0.20.2.tar.gz (655.0 kB view details)

Uploaded Source

Built Distribution

unxt-0.20.2-py3-none-any.whl (55.3 kB view details)

Uploaded Python 3

File details

Details for the file unxt-0.20.2.tar.gz.

File metadata

  • Download URL: unxt-0.20.2.tar.gz
  • Upload date:
  • Size: 655.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unxt-0.20.2.tar.gz
Algorithm Hash digest
SHA256 138355d6e89c1f6118fe203f252130b387cf989deec021f89a67a82e72916d07
MD5 fb4b3efc34f678c8e949a0c76405193b
BLAKE2b-256 db698b66e3829ee55ab691dfe1a9a5c36a9ed99c9b0bf10afaffe5508dffb42c

See more details on using hashes here.

File details

Details for the file unxt-0.20.2-py3-none-any.whl.

File metadata

  • Download URL: unxt-0.20.2-py3-none-any.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for unxt-0.20.2-py3-none-any.whl
Algorithm Hash digest
SHA256 051538c51fb279403482b1f5ce17cd047bb42532da42788e029250b19b71dbe5
MD5 79084c8cdcc71cd5bb2b7f870bc4417a
BLAKE2b-256 af4c5ce32349301e128b5cce3597f35701ab9574bf2c071112ee24ec018d8856

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page