Skip to main content

ROOT I/O in pure Python and NumPy.

Project description

PyPI version Conda-Forge Python 3.5‒3.9 BSD-3 Clause License Test build Deploy to PyPI

Scikit-HEP NSF-1836650 DOI 10.5281/zenodo.3952728 Documentation Gitter

Uproot is a reader and a writer of the ROOT file format using only Python and Numpy. Unlike the standard C++ ROOT implementation, Uproot is only an I/O library, primarily intended to stream data into machine learning libraries in Python. Unlike PyROOT and root_numpy, Uproot does not depend on C++ ROOT. Instead, it uses Numpy to cast blocks of data from the ROOT file as Numpy arrays.

Installation

Uproot can be installed from PyPI using pip (Awkward Array is optional but highly recommended):

pip install uproot awkward

Uproot is also available using conda (so is Awkward Array, which conda installs automatically):

conda install -c conda-forge uproot

If you have already added conda-forge as a channel, the -c conda-forge is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:

conda config --add channels conda-forge
conda update --all

Note: if you need to write ROOT files, you'll need to use the deprecated uproot3 for now. This feature is coming to the new version soon.

Getting help

Start with the tutorials and reference documentation.

Installation for developers

Uproot is an ordinary Python library; you can get a copy of the code with

git clone https://github.com/scikit-hep/uproot4.git

and install it locally by calling pip install . in the repository directory.

If you need to develop Awkward Array as well, see its installation for developers.

Dependencies

Uproot's only strict dependency is NumPy. This is the only dependency that pip will automatically install.

Awkward Array is highly recommended. It is not a strict dependency to allow Uproot to be used in restrictive environments. If you're using Uproot without Awkward Array, you'll have to use the library="np" option or globally set uproot.default_library to return arrays as NumPy arrays (see documentation).

  • awkward: be sure to use Awkward Array 1.x.

The following libraries are also useful in conjunction with Uproot, but are not necessary. If you call a function that needs one, you'll be prompted to install it. (Conda installs most of these automatically.)

For ROOT files, compressed different ways:

  • lz4 and xxhash: only if reading ROOT files that have been LZ4-compressed.
  • zstandard: only if reading ROOT files that have been ZSTD-compressed.
  • backports.lzma: only if reading ROOT files that have been LZMA-compressed (in Python 2).

For remote data:

  • xrootd: only if reading files with root:// URLs.

For exporting data to other libraries:

  • pandas: only if library="pd".
  • cupy: only if library="cp" (reads arrays onto GPUs).
  • boost-histogram: only if converting histograms to boost-histogram with histogram.to_boost().
  • hist: only if converting histograms to hist with histogram.to_hist().

Acknowledgements

Support for this work was provided by NSF cooperative agreement OAC-1836650 (IRIS-HEP), grant OAC-1450377 (DIANA/HEP) and PHY-1520942 (US-CMS LHC Ops).

Thanks especially to the gracious help of Uproot contributors (including the original repository).


Jim Pivarski

💻 📖 🚇 🚧

Pratyush Das

💻 🚇

Chris Burr

💻 🚇

Dmitri Smirnov

💻

Matthew Feickert

🚇

Tamas Gal

💻

Luke Kreczko

💻 ⚠️

Nicholas Smith

💻

Noah Biederbeck

💻

Oksana Shadura

💻 🚇

Henry Schreiner

💻 🚇 ⚠️

Mason Proffitt

💻 ⚠️

Jonas Rembser

💻

benkrikler

💻

Hans Dembinski

📖

Marcel R.

💻

Ruggero Turra

💻

Jonas Rübenach

💻

bfis

💻

Raymond Ehlers

💻

Andrzej Novak

💻

Josh Bendavid

💻

Doug Davis

💻

Chao Gu

💻

Lukas Koch

💻

Michele Peresano

💻

Edoardo

💻

JMSchoeffmann

💻

alexander-held

💻

💻: code, 📖: documentation, 🚇: infrastructure, 🚧: maintainance, ⚠: tests and feedback, 🤔: foundational ideas.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uproot-4.0.1rc2.tar.gz (163.5 kB view details)

Uploaded Source

Built Distribution

uproot-4.0.1rc2-py2.py3-none-any.whl (196.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file uproot-4.0.1rc2.tar.gz.

File metadata

  • Download URL: uproot-4.0.1rc2.tar.gz
  • Upload date:
  • Size: 163.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for uproot-4.0.1rc2.tar.gz
Algorithm Hash digest
SHA256 c81b7682483e2744252d6fa706eca1503b1a99749ab0c125e67427f4b6d9b31a
MD5 90a9580371ae1286f8b8851c2b8664fc
BLAKE2b-256 4879ce38283df11226c55285c57fb0da43b72126b53eddcc89c5a76261fee9f1

See more details on using hashes here.

File details

Details for the file uproot-4.0.1rc2-py2.py3-none-any.whl.

File metadata

  • Download URL: uproot-4.0.1rc2-py2.py3-none-any.whl
  • Upload date:
  • Size: 196.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for uproot-4.0.1rc2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 da709d5148d5cff32d0d3b7a28da60df51a06daf63dee0414b15312e80e1f0f5
MD5 3c390c836cbd766cc08c71cc655cc634
BLAKE2b-256 13a6f8ac45c47f2ce190bcaed564732ee5c3952e599d0a068e00d8a341f14814

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page