Skip to main content

Forecasting utilities

Project description

utilsforecast

Install

PyPI

pip install utilsforecast

Conda

conda install -c conda-forge utilsforecast

How to use

Generate synthetic data

from utilsforecast.data import generate_series
series = generate_series(3, with_trend=True, static_as_categorical=False)
series
unique_id ds y
0 0 2000-01-01 0.422133
1 0 2000-01-02 1.501407
2 0 2000-01-03 2.568495
3 0 2000-01-04 3.529085
4 0 2000-01-05 4.481929
... ... ... ...
481 2 2000-06-11 163.914625
482 2 2000-06-12 166.018479
483 2 2000-06-13 160.839176
484 2 2000-06-14 162.679603
485 2 2000-06-15 165.089288

486 rows × 3 columns

Plotting

from utilsforecast.plotting import plot_series
fig = plot_series(series, plot_random=False, max_insample_length=50, engine='matplotlib')
fig.savefig('imgs/index.png', bbox_inches='tight')

Preprocessing

from utilsforecast.preprocessing import fill_gaps
serie = series[series['unique_id'].eq(0)].tail(10)
# drop some points
with_gaps = serie.sample(frac=0.5, random_state=0).sort_values('ds')
with_gaps
unique_id ds y
213 0 2000-08-01 18.543147
214 0 2000-08-02 19.941764
216 0 2000-08-04 21.968733
220 0 2000-08-08 19.091509
221 0 2000-08-09 20.220739
fill_gaps(with_gaps, freq='D')
unique_id ds y
0 0 2000-08-01 18.543147
1 0 2000-08-02 19.941764
2 0 2000-08-03 NaN
3 0 2000-08-04 21.968733
4 0 2000-08-05 NaN
5 0 2000-08-06 NaN
6 0 2000-08-07 NaN
7 0 2000-08-08 19.091509
8 0 2000-08-09 20.220739

Evaluating

from functools import partial

import numpy as np

from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mape, mase
valid = series.groupby('unique_id').tail(7).copy()
train = series.drop(valid.index)
rng = np.random.RandomState(0)
valid['seas_naive'] = train.groupby('unique_id')['y'].tail(7).values
valid['rand_model'] = valid['y'] * rng.rand(valid['y'].shape[0])
daily_mase = partial(mase, seasonality=7)
evaluate(valid, metrics=[mape, daily_mase], train_df=train)
unique_id metric seas_naive rand_model
0 0 mape 0.024139 0.440173
1 1 mape 0.054259 0.278123
2 2 mape 0.042642 0.480316
3 0 mase 0.907149 16.418014
4 1 mase 0.991635 6.404254
5 2 mase 1.013596 11.365040

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

utilsforecast-0.2.9.tar.gz (41.0 kB view details)

Uploaded Source

Built Distribution

utilsforecast-0.2.9-py3-none-any.whl (41.7 kB view details)

Uploaded Python 3

File details

Details for the file utilsforecast-0.2.9.tar.gz.

File metadata

  • Download URL: utilsforecast-0.2.9.tar.gz
  • Upload date:
  • Size: 41.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for utilsforecast-0.2.9.tar.gz
Algorithm Hash digest
SHA256 f6e0515637d5f6556327e3b1784a3dc190c7a193b9419aca029e1395d099215c
MD5 f8148029517533efc68b5fd7654d925a
BLAKE2b-256 18b0c5a3ef13b537515e57c865549f1c4d19837c6d5531109efec05becd1890a

See more details on using hashes here.

Provenance

The following attestation bundles were made for utilsforecast-0.2.9.tar.gz:

Publisher: release.yml on Nixtla/utilsforecast

Attestations:

File details

Details for the file utilsforecast-0.2.9-py3-none-any.whl.

File metadata

File hashes

Hashes for utilsforecast-0.2.9-py3-none-any.whl
Algorithm Hash digest
SHA256 684398bb8d6e460d53aa2a7c8b9f4256573d61fcd387fc2ecc193f8b5328cab9
MD5 a2049a31e322df41ea62e5956680f655
BLAKE2b-256 c0dc75080416c546291c378b2651633a14900e950267183a05d9522f94ae9aec

See more details on using hashes here.

Provenance

The following attestation bundles were made for utilsforecast-0.2.9-py3-none-any.whl:

Publisher: release.yml on Nixtla/utilsforecast

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page