Skip to main content

Load numpy arrays from a VCF (variant call file).

Project description

Load numpy arrays from a VCF (variant call file).

Installation

Installation requires numpy and cython:

$ pip install vcfnp

…or:

$ git clone --recursive git://github.com/alimanfoo/vcfnp.git
$ cd vcfnp
$ python setup.py build_ext --inplace

Usage

import sys
import vcfnp
import numpy as np
import matplotlib.pyplot as plt

filename = '/path/to/my.vcf'

# load data from fixed fields (except INFO)
v = vcfnp.variants(filename).view(np.recarray)

# print some simple variant metrics
print 'found %s variants (%s SNPs)' % (v.size, np.count_nonzero(v.is_snp))
print 'QUAL mean (std): %s (%s)' % (np.mean(v.QUAL), np.std(v.QUAL))

# load data from INFO field
i = vcfnp.info(filename).view(np.recarray)

# plot a histogram of variant depth
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.hist(i.DP)
ax.set_title('DP histogram')
ax.set_xlabel('DP')
plt.show()

# load data from sample columns
c = vcfnp.calldata(filename).view(np.recarray)
c = vcfnp.view2d(c)

# print some simple genotype metrics
count_phased = np.count_nonzero(c.is_phased)
count_variant = np.count_nonzero(np.any(c.genotype > 0, axis=2))
count_missing = np.count_nonzero(~c.is_called)
print 'calls (phased, variant, missing): %s (%s, %s, %s)' % (c.flatten().size, count_phased, count_variant, count_missing)

# plot a histogram of genotype quality
fig = plt.figure(2)
ax = fig.add_subplot(111)
ax.hist(c.GQ.flatten())
ax.set_title('GQ histogram')
ax.set_xlabel('GQ')
plt.show()

Acknowledgments

Based on Erik Garrison’s vcflib.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vcfnp-1.0.tar.gz (424.4 kB view details)

Uploaded Source

File details

Details for the file vcfnp-1.0.tar.gz.

File metadata

  • Download URL: vcfnp-1.0.tar.gz
  • Upload date:
  • Size: 424.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for vcfnp-1.0.tar.gz
Algorithm Hash digest
SHA256 a296280426e594ba4853f6e98db93b62a706b9f5941c1fadc5b581ff08921dff
MD5 3a37f7597637d4e7af76639411b145bc
BLAKE2b-256 007d8c2d0e58da5df17126833a4edcb05033613fc155f8d2cbf2df8f682864b7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page