Skip to main content

vegafusion-python-embed PyO3 Python Package

Project description

vegafusion-python-embed

This crate contains the Python library that embeds the VegaFusion Runtime and select Connection. This crate uses PyO3 to expose the Rust logic to CPython.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vegafusion_python_embed-1.2.0.tar.gz (6.5 MB view details)

Uploaded Source

Built Distributions

vegafusion_python_embed-1.2.0-cp311-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

vegafusion_python_embed-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.0-cp311-cp311-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.0-cp310-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

vegafusion_python_embed-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.0-cp310-cp310-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.0-cp39-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

vegafusion_python_embed-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.0-cp39-cp39-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.0-cp38-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

vegafusion_python_embed-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.0-cp38-cp38-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.0-cp38-cp38-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.0-cp37-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.7 Windows x86-64

vegafusion_python_embed-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.0-cp37-cp37m-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

vegafusion_python_embed-1.2.0-cp37-cp37m-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file vegafusion_python_embed-1.2.0.tar.gz.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0.tar.gz
Algorithm Hash digest
SHA256 066576cf5ae2df165ed6599cbc6f7dede425190e887113e40cff821c7cbde057
MD5 2d5df7503e3ee36466e01cd4182b891e
BLAKE2b-256 4ebfdbc8f4a4e78339bde459497ae08065d14450f9d6af1981f8a9c3075c928d

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 3c8607c08e116e662f287f19c91917efe588ecdedd501655a9c31c1fc5c2f012
MD5 5c3a300c7799fd58ce8ba86d252a7c6e
BLAKE2b-256 19823d49f10a69313a1aaa25d4578ac4c868784537469c4247907728c28d2ed4

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 927d40e84d045c4e2f30ab15a7b07349137fe9d8d8d42bdd8e00d6eee23f2fd6
MD5 297c536d8c7f541ac2fab9e8d8c23f85
BLAKE2b-256 5026d29e4ec16d0dcdf609ef91e30f9296be093e45d3167162ca454dbfb3faf2

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af56a88530664cdf80fb5d8dacc5a49b965f8b6bc15275ab0a8ff6d864221aff
MD5 455422fbdfa468b8c9a7f4524f6d56ca
BLAKE2b-256 2d998be4c6976599d5354fc3a97cd54ee4d81021f2db609c17bb919365b29abf

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 900317235c7d3051cf6435699c54c41f19b58b39199c33d8fa54929ac66b631c
MD5 b88a47d59639a6df1077ee815502dba4
BLAKE2b-256 c81ab05469178c239a23e5334c383dc54ac316cd551556fe4f39b2906644f31f

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 5842910075fbe3d423ce350064a19b41c05b442f2b349e4bd45d51b081bb72e6
MD5 3c98cf99c9ac117d4a04ced58e9ed1ca
BLAKE2b-256 c1eec0b10ce2490cedd950c44045ad1c6a0b15586c3cc846c2fcde86ca57c60f

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7259767ccf5da7b62759740446114d2ab827589ebeea8be34e5fa60b082d75c3
MD5 dc0bb82007edf2b4925378eb3c042021
BLAKE2b-256 32782a69e94a7f23d570da679f0d3f8506ee2c9bf2677e01b402832e4426bfc5

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 59f33ce30c6b15ad74ae6d703ad24e1ffa27866e94c4bff0e97cf03097a743f1
MD5 513f3ebd41f5daa893b96aa9dee5545c
BLAKE2b-256 8136f33cbc0cfc971fc37c0617e15138a652f71c33bd88a8fcd6feff1a7769b7

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1a148c74f2caebc7983a633cb1f13ebe6a4b15e230199b544550e139e8008cbf
MD5 965d8e6f182637ddecffc67cd7f13d48
BLAKE2b-256 dac575fa1e874d953dc200e92099531882589d5510d48e38616417e384dea4b3

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6bc76921c438d08f356629f25e27d9366d4d9e230b22a9bfa74a35c0fdb29d14
MD5 133a29c6e31eecaf32dfbe0699b5720b
BLAKE2b-256 dc45dc0ff050b43aa42eb740988396cab912694aa75f4a2b1e6cfde92a51aab2

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 864a19dc7c1c02aa7430d77aef7ecf95d1a6e4f74b4b3804653b41aae92e52a6
MD5 aa96df52133817bcf63e4856019d3d8b
BLAKE2b-256 d1d240ec8d772b2b92c8d479def98d75a1405cf78049563b4ba7d12b05c06fdc

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b8848e571cbfca0d1490a2bcd02e91af768119450405c2b80b9229c9b4736e2
MD5 9e52df6c17064e3268a9e392cfd5b1ed
BLAKE2b-256 589b7bca7cacaf677d36eead624a05148d671f95f54f9a1af268649ea98e2f1e

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 406d92c46c6c079d0946b334e5dc7b270f9a391e0f4d8b373fa752addb941ef1
MD5 2172a554ae5f9fe504c4a8f0415b8d8c
BLAKE2b-256 f0ed65a34cacd0cba1a1646b340512a594473a8c14c654a2d5bd779b7daee6f7

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 407d243074e3b4a3710be053fee8bf93dd99df83e6214c235e5e7cfa5b8f60b5
MD5 33fc5736216e73461824774038dd0181
BLAKE2b-256 e65069562234b46bade54521d6aa2ffba0515dc7bba439fe44a41e5ec2d020e9

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41d4d16746256dc6ea1573b2bd2d31ca683bef127eacdbe03e52f8baf37b9abb
MD5 b80440c832ee7e107578c9a10729226a
BLAKE2b-256 c319c5a01d5803b5b32660f3321cd88cd1b65a32ed4e0a83f6977c1bc704f10b

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6bfae8e67268df3b2ad435b1d0add65941b351fb5c3ec82823c1f149a720c012
MD5 7cf8ab2af33264c64a305f778b501f4f
BLAKE2b-256 6c691abd671dcd1d9368c2718d961ed285e9f24d3ba12a972ecb1722b712e177

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 24ddd9d92275c64ae0825152a19aa713b94c78bfeb70165aca9ac07cde2f8a5b
MD5 c6610c62e643aa8e01c3350cda4c08c1
BLAKE2b-256 08471b86c0c78bf2a380899471a15f381e579480ac482e0136ad14ad604e41f6

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 1a52994a4b817ee165416db3e8f793a2ac79c80aa320774cafd4b054fd8f9642
MD5 e48843721038fcaa71a6b5860fbd26bc
BLAKE2b-256 7c700a607d88060001aa90dd54ebc6e5fca9bb734869657870f0d6fd76723d2f

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7441efdd3337a53b8d5c24d462f58e74d46074b0f213bbeb2288c2fa6a3604d1
MD5 47d8ee4d1acee8958c96e181059583a6
BLAKE2b-256 1c5566e211d3cff574e2b4e643b7a884fedceba25c13f7e328e89da491de966d

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c1b9e7b1cfb89bb0d589393a46567dff6c8859e0aba88f2a1b3e820e6db484b
MD5 06a88bc8f661e3dd2654128bccdc01e4
BLAKE2b-256 4f8e3e324d5e91077c37b35a1e5936c1825fb64ad2c3d2e9fa49f1ae230b2a7c

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d3c7a8e1cd444e7acee78b9e32f2526b3d679b5932ef332ea45891eefbe603c6
MD5 e21d5d19dfb5b6467d85dfff4c3a0b2e
BLAKE2b-256 30295505a0326839c9f47c07badeb65dc12f3a6640cf6d329c75f4a345275d05

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page