Skip to main content

vegafusion-python-embed PyO3 Python Package

Project description

vegafusion-python-embed

This crate contains the Python library that embeds the VegaFusion Runtime and select Connection. This crate uses PyO3 to expose the Rust logic to CPython.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vegafusion_python_embed-1.2.2.tar.gz (6.5 MB view details)

Uploaded Source

Built Distributions

vegafusion_python_embed-1.2.2-cp311-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

vegafusion_python_embed-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.2-cp311-cp311-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.2-cp311-cp311-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.2-cp310-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

vegafusion_python_embed-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.2-cp310-cp310-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.2-cp310-cp310-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.2-cp39-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

vegafusion_python_embed-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.2-cp39-cp39-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.2-cp39-cp39-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.2-cp38-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

vegafusion_python_embed-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.2-cp38-cp38-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

vegafusion_python_embed-1.2.2-cp38-cp38-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

vegafusion_python_embed-1.2.2-cp37-none-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.7 Windows x86-64

vegafusion_python_embed-1.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

vegafusion_python_embed-1.2.2-cp37-cp37m-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

vegafusion_python_embed-1.2.2-cp37-cp37m-macosx_10_7_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file vegafusion_python_embed-1.2.2.tar.gz.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2.tar.gz
Algorithm Hash digest
SHA256 3c2824487aab337d23a4849376410a0469d5c32d7d810d15d79ca76ac506acf5
MD5 f62c4416839537471dff6838e4f26f46
BLAKE2b-256 02d14de6cd23f313699cefb3be08e942dfdd1040eba3aa09f37b5d5e5461436e

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f0b44ad666f008c576778b92dc4125f9b037cefb1e950752ff4e63b7a0e73638
MD5 fbe04756c2aac75653044ff879ad36f6
BLAKE2b-256 2f6bfc5ba06a82e2acf31529435369f82fec1350be01d601d03e86e5d1abd238

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc8dee6a126292a05be44e83e3a2194b030cfdbfef9367360cb03ca8d69d3e01
MD5 d183403389f826ea9a88fab7b32aef3d
BLAKE2b-256 17162afad19b50a079559ac7a0b55574aabdc55bb6871511e84be9f040ccec24

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 754e1c9f48cc91bf8ae4f74046a028ab93dff9ec697ecccf0f60de2198eddc8b
MD5 3c3297c30f19a3e2c0c5fa5b5f726a50
BLAKE2b-256 e7507c47dec645508bab2b3faa33e188bc29ce783f5ab40bad2c4a76ef47d21c

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3f2cd40793e50608816a2fdc0f2dc8af7ea95a8c5b6a1b26e05d4737a9193f79
MD5 c9b5f73e41f4de4d27e4fb125373aecd
BLAKE2b-256 d90932e2c466633053ad2b228c7126374b0c5115a5484b52c7b61a9029f76b5d

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 3c992c475185fe4edd214510d74963163aca926a179e4f245a6371254ea3d090
MD5 a082a39ff7f68532bf993f813c07950c
BLAKE2b-256 b8c1571307b36fe708b652f755ee226e08eec9ce28aff45c6d5a1602d1670b86

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 580f2db9f21bb2c00eb00c78750b1bf668e9c4074a7ab4f51e40716cc24864c5
MD5 992be4db18c2ed8aa82611ddd81ac983
BLAKE2b-256 dc378c49b2f477cf4527578fc9ea28c8eb6ccbba5afe50d867689fb6b115c314

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1073777057a270429ab58905a8559596e4eb22eab853842c023cb639e7b89769
MD5 1a2f28f2bd1c51dc1eab5338096a89d1
BLAKE2b-256 0484af3f8b826f127e41864e3f1e0b73ef7168c021c520c61493dabd41c13a9c

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 adfd1be3c3e82fb10557bc19b2e1c3dc9f75694928649e0642b96a932e043b4a
MD5 1180fd740d8e674f8b797d478f693516
BLAKE2b-256 127fad1925c07719bb8a8df63efa6884d3c7b5bf3e254b937bd85226fb92d4ae

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 e6d10556e9a1ff6abe4e85a101c46a4e14fc79a04b3758358bc9f9f8844faaa4
MD5 fec15441463d437d2303a675f6f29a58
BLAKE2b-256 4e8a1cccb00e2c8630ed9ead10bd9acaa352c7efd41a7d8e5385a9c5a046011d

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45b594d9f083231a3c86f4d9d86c619898a579c8807a4002f8801ddeba60d06a
MD5 c2cd6399c56bfab430926595bf94d7be
BLAKE2b-256 6213c5ce6c98133ed9710d56ef01b688b8a039f5c086c707f11cd9af39574fcb

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e9b160f78f5e54d273a2112d708d9b63746ebad81a9525199094fee1b3b33f7
MD5 3c1d82ca0fd69eabe4ef1337b4276ae7
BLAKE2b-256 fd9703c3e146ff202067822fb13cfc9c5fe5b5ac3e56f9f5411a05d1bb698a33

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2f8a61ae184655678b9b3bdcc3743e44da0e23e5e0d240621288f98033d1b397
MD5 7583c56b2705ced603d143fc4a4b6a10
BLAKE2b-256 9013a7e04b0a5627c4b68abbccffa9fc9fd12400c1c01532c3068706d8126d7a

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 adfc3fcbeb888082e71b65af46b0ac9e8c633376dcd2254f503afa9a188bc1dd
MD5 b0d665d0ca17316c7ef204c2e8ed4f67
BLAKE2b-256 01abe633b69f2aa6ebed69ccebffade4d5dd45072e4fdaff0fcf4cf02588e214

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14419b26aca275ab66c9645d6f5e3ab400daaf4eced8211721f319b186deec1c
MD5 9767d51d8227713ec94475be5b4da6c9
BLAKE2b-256 aac3d69129dd7bde85ec7f8afc827664c8c4c4b886076453f597ba31756cd8ef

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8133dda9d5e57a55f8f65b9651b29afd4ac822481c69e9b8aacfc132efa96b0c
MD5 d954b5124f1c7d620cd71e8b4b1cdc6f
BLAKE2b-256 66ad037e83c1e32408865cd76d1427b420cb49c389a7d9d97552a4bbb2e49cf5

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 356e7342574ade78b95500f80e25c18f850921958435c9a715650ec528195d06
MD5 4515a6654e972b2a996e6d8e3d94dfb4
BLAKE2b-256 0dc518748c4d232d6d0a284780eb30f9e9f4ff9d96fbad788c8535ae755b7cfc

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c9ba3e3baa1369e3661e237cbec590565d48e55e1e737172e6e8ea09a7c38dd1
MD5 755f5cdb35d16679786db66c2c5ee1a9
BLAKE2b-256 69b0cb2ebf9fec41ab92867fe99add4f594425f9f52415689ef7e77c9985b90a

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47ea34c91bc0a19e2ebaa3c42ffd9d02d488748f37277daac2e0f4e8bb6c584e
MD5 368e9e395d114fcb4517f19593a25cd3
BLAKE2b-256 eb477dd759f9457b3d7cfce1fc939979401972e539284f1c952586b17ae6db84

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1efa41ac83c0d74faed4d072290bbc794681d5b6ec5577300942e7c0957e860
MD5 a6a3d239f8fe74964086714705b659af
BLAKE2b-256 724d0be6526a984b424c8ba1ca66f561cb50c12a768c789726f24f0ab04a97af

See more details on using hashes here.

Provenance

File details

Details for the file vegafusion_python_embed-1.2.2-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for vegafusion_python_embed-1.2.2-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 58fe62d22d4e1331d52900fdee09c69c96bb554b36f6ea7bb4c9f2d7f9ee5322
MD5 4448c5dd735cc529264f1ec713e728c3
BLAKE2b-256 ffd6c264099c15ec0f9850fcb039cc0ab0813f220156f22dfc2157b8284358f0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page