Skip to main content

Processing and gridding spatial data

Project description

Verde

Documentation | Documentation (dev version) | Contact | Part of the Fatiando a Terra project

Latest version on PyPI TravisCI build status AppVeyor build status Test coverage status Code quality grade on codacy Compatible Python versions. Chat room on Gitter Digital Object Identifier for the JOSS paper

About

Verde is a Python library for processing spatial data (bathymetry, geophysics surveys, etc) and interpolating it on regular grids (i.e., gridding).

Most gridding methods in Verde use a Green’s functions approach. A linear model is estimated based on the input data and then used to predict data on a regular grid (or in a scatter, a profile, as derivatives). The models are Green’s functions from (mostly) elastic deformation theory. This approach is very similar to machine learning so we implement gridder classes that are similar to scikit-learn regression classes. The API is not 100% compatible but it should look familiar to those with some scikit-learn experience.

Advantages of using Green’s functions include:

  • Easily apply weights to data points. This is a linear least-squares problem.

  • Perform model selection using established machine learning techniques, like k-fold or holdout cross-validation.

  • The estimated model can be easily stored for later use, like spherical-harmonic coefficients are used in gravimetry.

The main disadvantage is the heavy memory and processing time requirement (it’s a linear regression problem). So it’s not recommended for gridding large datasets (> 10,000 points), though it will depend on how much RAM you have available.

Project goals

  • Provide a machine-learning inspired interface for gridding spatial data

  • Integration with the Scipy stack: numpy, pandas, scikit-learn, and xarray

  • Include common processing and data preparation tasks, like blocked means and 2D trends

  • Support for gridding scalar and vector data (like wind speed or GPS velocities)

  • Support for both Cartesian and geographic coordinates

The first release of Verde was focused on meeting these initial goals and establishing the look and feel of the library. Later releases will focus on expanding the range of gridders available, optimizing the code, and improving algorithms so that larger-than-memory datasets can also be supported.

Contacting us

Citing Verde

This is research software made by scientists. Citations help us justify the effort that goes into building and maintaining this project. If you used Verde for your research, please consider citing us.

See our CITATION.rst file to find out more.

Contributing

Code of conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Contributing Guidelines

Please read our Contributing Guide to see how you can help and give feedback.

Imposter syndrome disclaimer

We want your help. No, really.

There may be a little voice inside your head that is telling you that you’re not ready to be an open source contributor; that your skills aren’t nearly good enough to contribute. What could you possibly offer?

We assure you that the little voice in your head is wrong.

Being a contributor doesn’t just mean writing code. Equality important contributions include: writing or proof-reading documentation, suggesting or implementing tests, or even giving feedback about the project (including giving feedback about the contribution process). If you’re coming to the project with fresh eyes, you might see the errors and assumptions that seasoned contributors have glossed over. If you can write any code at all, you can contribute code to open source. We are constantly trying out new skills, making mistakes, and learning from those mistakes. That’s how we all improve and we are happy to help others learn.

This disclaimer was adapted from the MetPy project.

License

This is free software: you can redistribute it and/or modify it under the terms of the BSD 3-clause License. A copy of this license is provided in LICENSE.txt.

Documentation for other versions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

verde-1.1.0.tar.gz (142.8 kB view details)

Uploaded Source

Built Distribution

verde-1.1.0-py3-none-any.whl (131.8 kB view details)

Uploaded Python 3

File details

Details for the file verde-1.1.0.tar.gz.

File metadata

  • Download URL: verde-1.1.0.tar.gz
  • Upload date:
  • Size: 142.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/40.5.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for verde-1.1.0.tar.gz
Algorithm Hash digest
SHA256 01bf52a510d1c658d0d752efb0bc039727f9e83174a4d4b3b2a37d5ac408998e
MD5 092b4d74ea2b9792c4d1132902be854c
BLAKE2b-256 458a131fb3792c419892bec422deaa77cdc43f3d5f99fa12414af817559b8236

See more details on using hashes here.

File details

Details for the file verde-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: verde-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 131.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/40.5.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for verde-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cc1b408379b5006a3639d69a14fecee1ef0974a177d8144acc8c019ca12e7af3
MD5 80df27c89c6d5e20f423054cc487dce7
BLAKE2b-256 62998745fcd614abbbffc57e856cb04d6df578bd98ab8a0787645f702f01ead9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page