Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.14.3.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

vispy-0.14.3-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

vispy-0.14.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

vispy-0.14.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

vispy-0.14.3-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

vispy-0.14.3-cp312-cp312-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

vispy-0.14.3-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

vispy-0.14.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

vispy-0.14.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

vispy-0.14.3-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

vispy-0.14.3-cp311-cp311-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

vispy-0.14.3-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

vispy-0.14.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

vispy-0.14.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

vispy-0.14.3-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

vispy-0.14.3-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

vispy-0.14.3-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.14.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

vispy-0.14.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

vispy-0.14.3-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

vispy-0.14.3-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file vispy-0.14.3.tar.gz.

File metadata

  • Download URL: vispy-0.14.3.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for vispy-0.14.3.tar.gz
Algorithm Hash digest
SHA256 efbbb847a908baf7e7169ab9bf296138a39364f367e6cb0a8ec03ad71699d31d
MD5 ed0ab08504a7b2ef2fb2e90ce10bb77c
BLAKE2b-256 2496a0bf368c0a8f5c9b599f3f9f4643b425298dfde8a744c9b0b02af9ce8595

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for vispy-0.14.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2b39304dae410fde21723cdcf50cae71ba611479f01cb8e30116493ce318fcab
MD5 c10324a6c05053955a69b1d49d9ad6f9
BLAKE2b-256 7572e02fb3b3e3ad4458bdc9830e97a980919921752bca1f40d816c1e25d566f

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a90896898b10b31760634a955031dc048fda41fd6e21ee4ff3e12ebf16970b09
MD5 9d1371ceb3b983a879f9a2f49c3f54e7
BLAKE2b-256 5e0887a7e2640e5dd444804c69505eef8ae14d50d782c2b2d3b21679cf6a70be

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ca7aebb4280e3754ae60c673dafb2f5acc26d6182761215281b07e696962e013
MD5 c0342a62f14adc1f787846abcf231b82
BLAKE2b-256 2cff1cca6b74ec64789bd2b696cabd00276d1e82529d47a4e7db69147208abba

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31b1fdd1e1924ca04fce250fb958412fbcefe4f1e4e6fffa12eb4040c00b0963
MD5 defcd89b54bc01297854c1535cec1d1b
BLAKE2b-256 3efeae8018ab01cdea43f3cd2e072df28d257edd8274f1fcde04174ff263bf4a

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f624b58c9a62e68aeb279678f9ae042cf875c24f650b042e2a7005fde9f2f3e2
MD5 038538633b5f0ed0014670c87e26d90b
BLAKE2b-256 ae8b991197f3e975de9c7eb03bdd880bd00980ccb0d7be862518514905819c7f

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for vispy-0.14.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 12d8e23ffb865e6d491d71cbf0dc54f53ca41b9167f5de99cdb08921a111f585
MD5 3844bd2d4bb19b609a2d20512fc0e9bf
BLAKE2b-256 1a5d3a522ad57f6aeaff91bc7653854c27207fab9094d3ca2615db539a946227

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66bcb62a004bb97544fd14b9035c8194d8074a8dbc3eea6a6f9a3a9f5fc1ff08
MD5 3c2c72f4d752fbbf144a5083ecaa44e7
BLAKE2b-256 f74408653f4a54eba576cd2df95a1779a5bad7e3a4a9a6bfcaf575422beb9edf

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af4863e7ba8ec4985ab8772d86b11dc71b3ab20f29c7e044fb35a1a009da5f98
MD5 388e5fce9478bbdc90d978311a39e928
BLAKE2b-256 9496f2096351d4519b57a617857144c0ad238595f57ab8604fa6c304992db12c

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f474f415d280e5ed71f5a513c4d42d59049710b11f144fa85c312fd639c08a9b
MD5 05a6fa5375a500b10b01d01ae3a6e877
BLAKE2b-256 d87de2b6f574f4bac658255961f98d98776efad656d10391bf00982e7afc1485

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe3ae49fbc6fd7f53fa34a5bbe693eb7fb6b69316fb7fe60c5e2d352afafe278
MD5 29695386f3137b038fed807268b5df81
BLAKE2b-256 541dae51e2114e678418ecc00ea20762d556c0d4913271bfe227b22ef7997c1f

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for vispy-0.14.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f211440444edea428c9d0ffb70447e945015071efb3332408c6335b07c47574e
MD5 cd2e64fc17cf31d8aacef4eaaa5e9fc6
BLAKE2b-256 ac33353ae8a9cc093e07862ebab52beb5d04fb3764014e6bc9e01f7de25861cb

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bdc2bdf1b7aef27ca1a744ea7de7333e81e5ec4dc6bb532977fef8fed703cf8
MD5 83b6e4732a00c7d246f8bf5f24a2ee18
BLAKE2b-256 1a9e54d48be7c0129382f2358ed609da6289a31354e218c1ea8c65f6bf65af23

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b244bdfb70aebf1d8d926cd16408fd32bb204a5e1aa55813368f75f90c09389
MD5 0fef88caa76f8d8582217ca3c4395b49
BLAKE2b-256 7ced054ae026816444aa7ac31feaf4e3d9453ecadfdcb195e9b4f75abf394e33

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69f32f914bbb42c029e9eead272418a3a29c3d52d413a479c8ba32eab34ccab8
MD5 60382698cf007d703d1ed710971f3e76
BLAKE2b-256 7ea5966d50940d2cfa2a589abc9e0b13615ca0b1081fcb656392d52968ff8bd5

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df35d09a5638392875e605008e3efaebc91238d169bda1fadd74851eb0762cbc
MD5 8c03f1f3dd64533002d05368cd12aefb
BLAKE2b-256 4285aed5441743837003ab8633a92318dc1711c9289e49ceeed40e41e11f7037

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for vispy-0.14.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9778390a5df31bf19e1cec15ba477f24720708d3d6febe678e4e7ca82e031f84
MD5 ae371f1a434137cd8905215c848417bb
BLAKE2b-256 9c394dec48f53ddee4becfdbfffd00f00dd99f0c5f4c72aadcf78bd67987f9ea

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da3a3b05a72916e9cb39b013e67d7608db32e47943ede7adb85b7d5e085ee015
MD5 090e6d9b3720bbc920645025d486336e
BLAKE2b-256 d997a26a3956049e0d9bd459ffc3c040aa101cea1232d0eae3c9f29bc2d83489

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59d95977c3f6b7a42761e6e5349a27846f00e17d83891c3d8a19da12115f0e2a
MD5 c15499e71bae2e6a850b7184282ea5d7
BLAKE2b-256 92404de1bf8144adb890b5eb43b84d6fb897fcf270cd6e26a370068356898bee

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6fef00a20b1e040b70d869f0e4aea7e4e301a82a97bd2a5253730ef1b9664d21
MD5 a4a3077ce72d8186847cc7a1da9137b5
BLAKE2b-256 021283d050264f90442076dbe85a8b2772d9b8340a1d7d39a8d0881c6e4a80f0

See more details on using hashes here.

File details

Details for the file vispy-0.14.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a7e467e07b5e1be38233c70dab81de43bc3a9221a8fc309dec1b084d5676abf
MD5 99fa17937918df8eddff4ae618b38103
BLAKE2b-256 3b06c93807c2b8760eb9b1af646cd82eb646e0229f76222169249e5b062df68f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page