Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.11.0.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

vispy-0.11.0-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

vispy-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

vispy-0.11.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

vispy-0.11.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

vispy-0.11.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.11.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

vispy-0.11.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

vispy-0.11.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

vispy-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

vispy-0.11.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file vispy-0.11.0.tar.gz.

File metadata

  • Download URL: vispy-0.11.0.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for vispy-0.11.0.tar.gz
Algorithm Hash digest
SHA256 ce2d256a531d405f295933c74996912fbf43f655216db5fc6a8ff3a78747841a
MD5 50d9185db6b3145b9b677a8752461b65
BLAKE2b-256 538eb403cb6bc105b565971dbae0e8339bd99ec65c76a58a2cc2cb2f2be3216e

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.11.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for vispy-0.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6d161c126b7f876428c06b91f3872d8b98b5908649b2d7fd94f09d13bcc6927b
MD5 7532f86e79bc13ae8740c413b210c58c
BLAKE2b-256 eb07d2b63518d28b37840a5ed69d0aa81fe84af6f328d15413de7d6ab940d32e

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f689ad3a46fd1b525cd9c2eb2a1adde3365dfa209b05d3e7b8b9fbdebd318ba
MD5 e5f70ab87cc1bbcbd9da78774f3f4968
BLAKE2b-256 38d1a7415a6e90200498d725f54cbc744b51007996770f5b63d2b955d725202e

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eeedaae093b8637a50c3e583dd2c103fa5db895da401e8142c5b2a0e7c80188a
MD5 44462dd144c3a3efa7775cbd8780e673
BLAKE2b-256 706d662ac66fd453e5c3a76189a38a2a5c1048b2c56981ba5cf20e1cf6738743

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b0baa4e26c8476fe6931589ed11b1e94cb89e109c9b6c24679b1158a65488b1
MD5 ea054c7b49af48cfc41c15c7ead8db01
BLAKE2b-256 0095c0e7ee8b4d34e79714372377d51afbba19798903b9a5d9784e7783ef93a8

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for vispy-0.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 88b3de98f8b49934f49f671742903b8c253d76f092e87f3fc6d7bacc365b1502
MD5 9303e5e2d72d4d9cfe66a7afa0b64942
BLAKE2b-256 656ee3b9b7bdbbec9582b3547302264ed7d1b88c6eba166d943eb552f1b8d568

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f80f33991abc80bab370084a94bdef3ed1769aac1a8fa1eab1bda8705313c379
MD5 4a3748c4e4b5375dfb0acc909f6cfddf
BLAKE2b-256 758647109b59eddad9db1b5c3681c999358d6d1f542adefb70e193e73fec1070

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b7515b7b3536f3950aa8f3ff0af2568aa4bb31531d468821fb8c6f0e428f5f4
MD5 486f8cecd28982ab070472f831f0db8a
BLAKE2b-256 7778ee7bc2e91ee15da26e92fbd299739c1291b3edd1f90ab1cf265f078de0f5

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53d2b25c798989b4315457e7d330f2f8245310d09375cda4e76b5856461fa30c
MD5 d9b85ed1c7fe775d62dbe79e17ffbad4
BLAKE2b-256 29aad3d87c9ba52d02d27a07880c288c69efdaa20195b36a9a57cf3c7bb6d88a

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for vispy-0.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ca651ba6650c809f308a7d4e56c289b04df644f988ba3d0bf372950cd163d953
MD5 d9a3134e7a827d86b599625d324c3a0a
BLAKE2b-256 2c72efdb660c6b3ede561975c0784e8f7e0438a200c36d00f5dc0aca80cec0ed

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2d951ab2155ff773ee0f5e2d5ae1912f6de80ef3b6a2df01508af0a3597d8ca
MD5 03e777bd1c449834629191ab43a62c55
BLAKE2b-256 f2cec4a5073efe2750fb6b6d5bba092c3b13b29350bb12d91a9dc307f0b462e6

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 066958854e10096514d6d68b75aea782c21029b4f4608b5c8c3d50e67244f688
MD5 a2f9d93b930e8cef9a3b34d1fde19cae
BLAKE2b-256 364bebda2d58d8a5031d94bc8206a38053dcb95682533a3075501720469ce578

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9b9656733bd87bdb0c115e056003b6f76b5e1414e1cd8ea3c7213647f653270
MD5 29c7cee48461713d3e9d67956f6077ac
BLAKE2b-256 6c3d7463dd3b6edd380b539b399434197c8ce63db3d45de250beefd272a19a3a

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.11.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for vispy-0.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c0c0932e870f47207da7312ec2feab6c165b85776e428cbc3a704bc513a827f2
MD5 49cffca623e53fd1ebf210de2676bcf8
BLAKE2b-256 787b1b9b68d6ed938d740c6934985ac1b1b757f6c795913647437c5d100fe7e1

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 86b0fe3e61dc76635ff3853f92bc6d3f9cdb2dcb8999d6c56cc5663371156622
MD5 8bccce7697fb20da82aabd7cb0e35483
BLAKE2b-256 63b187b7f7fba0f57abb3998f1718600ad611580c8dbb3d4e4c5fbcf665d67d9

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92a3e5465ff07662c9411eda22f847d72c909efe0fde6cf4e7791e4071c1ac0a
MD5 5b9140ec1dc94abbe2d4455f858ce0ba
BLAKE2b-256 144065b9f089253521eaa6533ef371044acb8fa1d72c4131584e43c8002ddcbd

See more details on using hashes here.

File details

Details for the file vispy-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63772758a9dec6289649592c730f315d8a11067c5bba46956e9cc4010edcc27e
MD5 41096efdca349971c230a95fafe4224f
BLAKE2b-256 98636aa829815278089f24340e21972302f1ae2e03fb72796bbd53131e4ca985

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page