Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.12.2.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

vispy-0.12.2-cp311-cp311-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

vispy-0.12.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

vispy-0.12.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.12.2-cp311-cp311-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

vispy-0.12.2-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

vispy-0.12.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

vispy-0.12.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.12.2-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

vispy-0.12.2-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.12.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

vispy-0.12.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.12.2-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.12.2-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.12.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

vispy-0.12.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.12.2-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

vispy-0.12.2-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

vispy-0.12.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

vispy-0.12.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.12.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file vispy-0.12.2.tar.gz.

File metadata

  • Download URL: vispy-0.12.2.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.12.2.tar.gz
Algorithm Hash digest
SHA256 141c2ddccc1158555bc89f09010c4b1d754487e816357333f31e795a7146a024
MD5 c62d08d268d32054aa6a0b3bd9c9710e
BLAKE2b-256 f720c9b3080dcdcb11b78085f9dc4bf4ce9a7bae02ce18a923d235779ef8a6bb

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.12.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a253467b36e390457c7450350363e466fe44776d426cdfe02bc908b861f9b09b
MD5 0d4fdd2193e8897011c97fea6efad5c4
BLAKE2b-256 528aaa8420833c51ede5b42a4b9d94d96c5a393df4497290764600796b333826

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e854c9efb93eb642c4db5560547c9015d6c4dcff36b3eb218cec7a319afa233
MD5 83b560cfef63d827b1247aa4456ce7f8
BLAKE2b-256 cae2055a878bc4b600f13debb00b96f5a9bbb7e89f4481dc0526d6f8faff3a83

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ed7d101eeb45d1d298e3cbb95e188ff24349a896cedc8392e55c83976ef0d97
MD5 d3de96790378ea291e87455a0473ac2c
BLAKE2b-256 0da0cc048c317ead3005cf1357cfec75d0853e7eca285150aad67e3c24fe2d3a

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7820897d1623a4efadd52daad4b9dcc1f47d420f640bd78c14ac7e7bb396b69
MD5 70a8131d6f703a61508919e886855a60
BLAKE2b-256 3e29588d34469bbba715285edd01ef31aba8b7ce9be88977763c37a3b0b4fbd8

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.12.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 de643df29fc1383d1172c236e4acd649b7115a71183cb60187deecc1795432f3
MD5 9e298c2a3d7e2c50f46d0c7a66de96b1
BLAKE2b-256 3bb8cf08d2b9522b8b6f1864d2162c5147ad161c574fa5bbaaeca270df3cecfa

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e319c1aed59d1aca3a4bc51861ee86044c772cc9affa41138f72dcd1a32af25a
MD5 d3d41d6b71a51b5d3a59af5030e69a31
BLAKE2b-256 8325fe68732e7f3e2e1f725c7b39b890ce36a76b2a57d84517d6927b32f1295a

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f3e537758b4c29de83956c26298808677d6c296bfe898ebb18bde942ea16a6d
MD5 6c989c60a3e37d071e04c65e2b2df12e
BLAKE2b-256 33e443f595cadebcb0ea914e1ffb25f5be538b052db5574bd0a01a060a634d59

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 564648ad91efeef88a39d01a0753fef1ff51b3d135f6187028a24a4f67e31bb8
MD5 af7d2ef8a1668a78c72fba87d45653b5
BLAKE2b-256 e67d57bba7c4edb2c1150169ea2c25ed076f7915ba488443a45c3b4f276bd2b4

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.12.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9832aa32e9dc00326ebe0187fef278e45cf8d20ef8be8ebd3da3a7142deaba86
MD5 2ee433c3999f72a4f1e4a6d559a87115
BLAKE2b-256 09415650ca3dcc8b4264ed807c6418497c184c48ce3586c293c540c775e10f2e

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7fe525918f07b9154144207ad48ed8835adb842828a043c9ac98ad8166fd8318
MD5 606b683a02d51d740f59c4ff9e131cfa
BLAKE2b-256 2939c046ff66e1f2abbd2cec9110f1a1551e4a57b788baa440bcace93541037a

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5238d0e47e00df6be531436bc84ca32bb44e8993049eff64352feaf8cda35539
MD5 37636b7a82772f3da5e74d84c2aba2cf
BLAKE2b-256 a72b3cad07c5daceb806cb3b25bbaf2c37287e638366a0758a173c28a0ef4f62

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 517e7350f57935084d5532af53b65381d9aeed1cc2a25dfcafa6a2eae78b6eba
MD5 a327e2bb110ea46e56f41872618ec2d9
BLAKE2b-256 cfcebcbdc447f870ecf9b9b8d05158199d79907211116758003b7af0b4a29f23

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.12.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 47d74e2da0c7eec4a3c829766d5713ec62d792a4cd2a7189bc8298fcc315360c
MD5 7bf30890fd4257083318d2b07a3ac592
BLAKE2b-256 afcc2bf8ecc0bf456a24e7baaf886a0860b3ef71bfb0d3bbd22bf1d835ffc807

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe36d9c9a4aba6369ca9e2af229ecc20d05b1ee581f598ef55505bcd68dd4eb1
MD5 133b8ac2096ef1c264e160e09041876e
BLAKE2b-256 338a994c2f0e225cfb2b37da2bed84a57ee555ac2c3d3b46fd9083c23bff78b3

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fa0e439f2d6d3891aa3bb9278b4bf3fd504ec173018f6bcd82e9b85cf0f02f2
MD5 de36f7b68593f2f2459aa6f2b199063e
BLAKE2b-256 a935ee3d05e8d541c8d07a8fc5c63dad13513bb2b93437a5f1c15c3f1d10a8b9

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5728f2439051da29d698b49c0f7d2cae38cd551efcb808997173a773616b096a
MD5 bb6fa8919be911492240aa8a711b7680
BLAKE2b-256 babb448afa9d2e01d69bf4358d550edc2d1cdccbe5eee3dfd204b9ef71b1859d

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.12.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.12.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1eb7dbd577acd899058e4bb4549540cdf4e332e72e7c0f2acb365943b5c8d19b
MD5 81b502b791cfe7a09a8ae7c4fe72a3eb
BLAKE2b-256 5cd89af30076485621240e6bb380398a9c9db40871a85e5c0e62fd0abdf50330

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42b52bf09c2550d6837e956930cd9bffddf7aa656f115fa6d93ebae8a5f9ac65
MD5 d83363626481708a710ef6aebc4c8ae8
BLAKE2b-256 e80c1e53d3a246f0c60725dd6e7a71cc8320a92dd197bf11d1b3301db72d930a

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a49cebc2d3e96e5771616c4ce68b7ce1dbf9012456db0227492466b4ebf9d8a
MD5 3fe432ad23bb3ec26f9fc17a909fa970
BLAKE2b-256 d9c10d6b037cae065e3ad9a63a183af8ea64f1474077df3d4264ae13cc3896c7

See more details on using hashes here.

File details

Details for the file vispy-0.12.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.12.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b486230b0c6f03caffd1bee496ee2117703dbda2b238e1e722e712be685d329a
MD5 e48d1ba02eaafa5bcbc2e9967a8ebe5a
BLAKE2b-256 d2dbe4bd80a284e92b9ef593a8196c09ae9539b182c530d8c18bf2b7e0dcb28f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page