Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.13.0.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

vispy-0.13.0-cp311-cp311-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

vispy-0.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

vispy-0.13.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.13.0-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

vispy-0.13.0-cp311-cp311-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

vispy-0.13.0-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

vispy-0.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

vispy-0.13.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.13.0-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

vispy-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

vispy-0.13.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

vispy-0.13.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.13.0-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

vispy-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.13.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

vispy-0.13.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.13.0-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

vispy-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

vispy-0.13.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

vispy-0.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

vispy-0.13.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file vispy-0.13.0.tar.gz.

File metadata

  • Download URL: vispy-0.13.0.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.13.0.tar.gz
Algorithm Hash digest
SHA256 b59f7bcf6528c914bca6ceb4ad959984c6604bea34663012a72ab88ad8889eaf
MD5 2bc3abda0d706e94cb9c725dfbf5c5d9
BLAKE2b-256 d65d6f4c35f5f67e39755473ca06db764aa187180836d5c5901bd2d70860dcf8

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: vispy-0.13.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.13.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0f37efcd01b44d745021fefc18e35df2cfd204a9173cd58dd35911f2b07e2c75
MD5 54d581b0fe01ba3a353604d0799190d4
BLAKE2b-256 b7549a04aa4ef6d96f40c20231de7b4701096a87a684e9c83b220d0f01c641c4

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d10e109622534738abb38b4d4111d00079184662c6501a53e5cc66a375c9222c
MD5 2f4c57305f923a5e6042f40c6aba78a0
BLAKE2b-256 2b36f00f77be3b35a5cde03a1c97f9b719532a3eda19e65f886b6d05d521e834

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2611e85ff2c239199cac5447f3c834a3d3fad3339d760fbfd02d85e38a7e96e
MD5 041d7e822fea235a831c5dcd6e4670f2
BLAKE2b-256 87740b3f0cb4f862e43c20d9431b4e379ff05f3e7cff8a83ec45d311f081a9c1

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2576335452840995605cde52d475d61897ae6d294253174cf1d2ca06efd5bbd9
MD5 0a2766e4f4ef89e9e1fb750bbe2c0184
BLAKE2b-256 102c565d5b427c8104b3a04a112d0312d0b30a61c0acdd8426118a96f25a7dab

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f986b41530ad51b3751c5a6815cb8e9c0950d3575c814deebfdbf2eb4a4f8dd
MD5 3806be7b3169e1877dae94184b9414c1
BLAKE2b-256 ed270fb923822f8c07b76b885a8831a934f5a84142a91cbe829bc50706e63737

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7ac06cacc2abdc4557e1c2d8225e235e26beef5d489ba0e90b7f654839753ef9
MD5 db9ab9b650fd4c5ef8add1cdeffc1a7f
BLAKE2b-256 50569333e817a28c5cd5d8c69785c98df3a2b725f11ba080844cad3e4687a93a

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54c4810f3e5eba8855c972d4b33986e8f287f755572c8a399487ddff1f76354f
MD5 43a2ac8641debe98efb8e48b35c53ed2
BLAKE2b-256 7565ac590c26a094c465b102575bd59f4d488d7c25d0160d825785efa60c9363

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdfb1ea80a966989f3a6791ef0c823e9975144be558ba1d083f24a7203be95d8
MD5 5f58d38e12fc5365c52146914d5861ae
BLAKE2b-256 13b8535886e53669126337a016916c5492c7b6247909be47041578015ed509df

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a7e8df037f286606767e157070ec959198014b7233d7d2a453222a324f10918
MD5 73eba3298f42d17ef15d8ae0ffdf1242
BLAKE2b-256 c81cec4b7200037f085884ef605aa9048aefeadd0f1a27e7da655d2589583262

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1fbd38dcf1586567fc2f77a4a9080e9eb0e006eefa302065049a9c24e69f275
MD5 bb8f480e2b8fd97a8b13d238ec448c8b
BLAKE2b-256 8e2693897315e9264594ab5bb2be3c7adb15ef41186122e654cf2cd9f1360f71

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 249fbbf9d68149472a32f87dd440b463ceab88437c3c87ada714f87ce0bafde1
MD5 6de101b01e5164dd9072d350a8faff14
BLAKE2b-256 33c596afb0a3083c9b77278779d5a888f7ce4ea7aeb8027a4d89d89c342c4e55

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6665de072b41d195e2297ad8f2a29c31cc8742641f48681222d328cc3fdea442
MD5 601a0800bcde453bfa3b67acd0de9835
BLAKE2b-256 99ef5b8cf1be6a8dbdcff6355c53dfe56bcd9d5c8254e8a17f62e740488e3154

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bdd09249a4b0da2067623a3809989001c2867bdb5fa1892fd32c399886ef954
MD5 8c4b54c17cd050f32d430c2da290dd25
BLAKE2b-256 02566d3687749e1f3ce8e1c3fa41e3cf70188df20883f5525a642bfb945b44bf

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ad1f4402c2719cc689dd992e7af5a6e78f30d9dbd1d7b2fd320459a4731dea2
MD5 1387478ad698f4b9c3a278704d3b494b
BLAKE2b-256 f098aa5755aa7dbfb74a4aaf2f91a60fd77c92e246fb6eee310a65d59f37dbb5

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1089e369e0b6dfb11b688491190616bf09e4d8946013ccdf922c25bcaf54b3a
MD5 e7b043b7b61da7f4f214528ba33895d2
BLAKE2b-256 e26d522e2edba902816db4cf3b091869e7cdd2f9cd2124d9873d3f5d2740ff6b

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 55edb13a073406e1da69288837ef216619c72e8fe6462f683326675f8f957be6
MD5 63f82350b7565993c652dc66f4fa79db
BLAKE2b-256 5c81466f983d1de02d6b2afe2947ea75a77d378bc9a58f20f1570789522ea26f

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ddf2ab4e06ffc4eddf071ef703b668a1d2b7c1f43ab9c2aee78b0145348518a
MD5 671263654edaf12b86b234d4e94ca6cc
BLAKE2b-256 418a7bfb5472d2a8325818c957736ea809c9f09aa1150d099b0131c9b5b448b8

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa206af978ce3255b2ffb598b2ab584497ad719489488c6e761b5ceaab5913ae
MD5 b7d238a84a5a76288f4403828f52502e
BLAKE2b-256 eb3cb32bc4af73c3f13fedf93c2a61df2a3014242c35e00956ef02f6ad374793

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 beac9dc6887a531eebbc80463862fed7cdfae3f422b61980a07eb7f8da1601ef
MD5 cc7dca6c7100a864829e69730a0eaa69
BLAKE2b-256 612babc30656e497b61237f5c43a7d2d3accbde87f6ab5c61217706671a68f4e

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a9fdf2b1f97878b559b04f02b32efe64cf43fb51c951d666efcab81990bdb1b
MD5 c61b1ba2fe48d0f48bcece17b6516756
BLAKE2b-256 63a2f39e31a8c05fef530b453b54f81ffd6357e0c88fe62890f99588ae4ec348

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for vispy-0.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 70d7b799e89717a8112eeb833de9d4f5a978abab224b76c83d67733b66bde628
MD5 bd71fe8199b33b312d0cf903db7da099
BLAKE2b-256 f61b519e24579dedf4d2693d8fddef508cc6ab371c6c53ded6b8451ce2c26fce

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c240af15bc70c9dacdfe923d30f6e9e82907c0857428dbc9a99786f926a31ab8
MD5 df3dc32e4434388a26ceb4947e5a169b
BLAKE2b-256 5b54f416657e98c2d649c06058ce640258abc816dbfaf5928fa27cc8b229ccaa

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8522a38aae34eee3a7dd18460616a8294a1668c9e9faa097c10c804e2ee9f2b6
MD5 9257dee8c94eaf0c48e0ff302262a291
BLAKE2b-256 c810f85eef955ab3b2b4812234f8128959d4c8acae2a130d3e1e209adffe73db

See more details on using hashes here.

File details

Details for the file vispy-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47d7d67accc25d24665adbad8a7a64e7bc69a83059d44c83a98fd2409ecd5600
MD5 8b40f8d01bea63fd6595f3a0a9fa8e78
BLAKE2b-256 fedc88fe54e1104af92a9443c71dea3e313b5ebb273b7221b1f8fe351c870ad9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page