Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See CHANGELOG.md.

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Governance

The VisPy project maintainers make decisions about the project based on a simple consensus model. This is described in more detail on the governance page of the vispy website as well as the list of maintainers.

In addition to decisions about the VisPy project, there is also a steering committee for the overall VisPy organization. More information about this committee can also be found on the steering committee page of the vispy website, along with the organization’s charter and other related documents (linked in the charter).

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.14.2.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

vispy-0.14.2-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

vispy-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

vispy-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

vispy-0.14.2-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

vispy-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

vispy-0.14.2-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

vispy-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

vispy-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

vispy-0.14.2-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

vispy-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

vispy-0.14.2-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

vispy-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

vispy-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

vispy-0.14.2-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

vispy-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

vispy-0.14.2-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

vispy-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

vispy-0.14.2-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

vispy-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.14.2-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.14.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

vispy-0.14.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

vispy-0.14.2-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

vispy-0.14.2-cp38-cp38-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file vispy-0.14.2.tar.gz.

File metadata

  • Download URL: vispy-0.14.2.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for vispy-0.14.2.tar.gz
Algorithm Hash digest
SHA256 eed8b44d6f5c87bd295b24aa9a2e0e4e6dc6a905ccee01b2d41c8fbf0a767b3d
MD5 0b8c1c3b06bef3cfb7ebe8615b313cdb
BLAKE2b-256 b31444e7def7e4415083fafd8b9fd1d57774007776d2be203442ac332b75f27b

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for vispy-0.14.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6f493f37db6130ae2a60fb97ad714429dd4b4fa8551883a3a6aa374efab7e04f
MD5 84b2232b3275290dc62a9c2189a9a487
BLAKE2b-256 73c19c8ab1168099e0ea1ff1e678ff3bf7bc2e3ab84688bf2e7f1fbf109fe7b2

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b151f038b09829eddeffd1138e10a5cf98cdd3ef5f76427abd04718c33e0492
MD5 82f8466a7f9531c38309a60f29f161fb
BLAKE2b-256 79dec251f69797ac77bf422b9ea702435e7ff2c067f9788c07cc96cef4cb9c66

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d50eeca053fdcd7f2f1f93204f327116018269453ef99a092f79308eab76ddd3
MD5 f3dad01aeac5e99f2c3e93a7a3f90fbb
BLAKE2b-256 e64b911c9735cfbadadafb3d72f78f726fa338f4acbb7486b0868950ef4533f2

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6af62ff8f5c3723bf15fddd8deb0057eb750e665af5698920c46e2351997df8
MD5 a99cb76ec5869384b5166cca528049b0
BLAKE2b-256 a04776f96526daa72e83b18735f426df5706de31ec6972d8d54ea83b1ba4ae50

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b93616278cbcfb5a529c06d278085cf57d93ce57dc063078998564fbcca3a57
MD5 da03fb43bf8f89b5b4b894a4be74bb30
BLAKE2b-256 6ed5a4da1dc7b3d7b1e4731b6e6b54db34b10dfebc1760d2658286ff0cd85736

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for vispy-0.14.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8bf14394d0cd612751e8df29ac530538185ae963b0969a19fc648da04413c71a
MD5 bf75be93322a2abb850c01f3b6b50a01
BLAKE2b-256 050a542d26c93ed9422301e6f57ff01f4e176357297b4eaaf24cc713efcd6c8e

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f2a0b26219e6b307b039a925da00def4926b9255adf88fd24beeb3301e120e6
MD5 c27996930b590bb107b9d0bbaf62644b
BLAKE2b-256 49085f0264c7de9ccc278e5b93b5130cfc114d054a43f28c6234620ed1853677

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 492eba503d1831fd55f16c8d17a543a3f811c2acee22fb212b9402622685a165
MD5 8d332f19faee8528a21ac4871d1cb411
BLAKE2b-256 cffd30cc965594f4bb8911509cb5e5d0aaaf70db393514327418ad7fa9e66676

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3230929b11e2515f59396f8972dd0864e6d4133297a29b30581173a59b8fc30
MD5 87f1f9bb81dd5e15f8a8437f25ee36f2
BLAKE2b-256 273bd361ce2df7d46f60f4af04e100ed72612d50788c4c012271aa1a609ea5b7

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 15bb4e80e533651b9f9132839a62cabf053988f2a87f066d492bdba6a807a3f0
MD5 a5ac6802d13da9a7fc1ec0bce3384a40
BLAKE2b-256 f2ceffb3f48acc4356307f5fc1cded64aab62f60d197c7380d16083bc36aad35

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for vispy-0.14.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0738c0b606939978309280c5528dc08db368d6b3a88e8eee532e5df9050d98cb
MD5 ef04f4345aebbe1df12e8ef17b588676
BLAKE2b-256 0a42138f876bb65e66e9534223e877239dbe85bd2d6cf0e2bdda5ac35f8e32ca

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2db2a4487ede8356eea4c29a189b345ca7f904bb507d0193356e8c3924a85ac8
MD5 74b1a72fd2e76c7a0aaa5ecfa7ab5adc
BLAKE2b-256 877b83777e05c4ceffa6df974f03756506dd69466d633c60fe8f3767b7ce0ea5

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b178cd8921c02de0405a5c4af7a4d48185849810bccc30d404ac4bac0f36846
MD5 e5bc0ac1dc1d3287813faa16c6162e06
BLAKE2b-256 7319271b58e7cc27d23f77838073106fd432554e3abd3b6e33fe0c54f2f0e534

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bed0fefc54c0b63cbc326b4fca043cbb490a329a14edb2e24f5d714afc56d8e2
MD5 9384469e0d3e0ba7327362f1a2dcc173
BLAKE2b-256 485a3197b38a9cfa5149f33b745786f7f1b4013acf5b2ce0a875c8e1bce51ce9

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be9cafc28da544692e4377168448b0901c06eef62057deeab861e7c38fe5f042
MD5 5e373c684c5c5ae20ecca87eb0cacf60
BLAKE2b-256 aed85ce66b11efa7f208a2b6bf457e43d4bd4df95ebe2553872d9816ea1fd469

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for vispy-0.14.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cf5882d996e31c94d67a678ffa41575c14c23cba856baf2f048a4bf5c2bbaa37
MD5 ef7dc87282ca1ed002725f7beb662d55
BLAKE2b-256 88cdad9dabbf8b0be9d997f0758389d2d71fe48eb99f4d931bc90bd5a021d937

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 679d151bd767f9b04d5d8cb73caf46f5ffbd73437ac707e1ed703172e7496fcd
MD5 61c5d1efce92e63100be94f436f7ba80
BLAKE2b-256 8dca4668be0a30f652966d02ca4c0a1bcf057c6ada7839948022df7d7134ee3e

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4ab02e56e655a0e53c60f2b3b4fbc87361fbd6126d28fc9ad11e32313eab9a3
MD5 bff958320cda45cf13de2df4c67e780e
BLAKE2b-256 116eabcfc81f15b1a4ccbda786c635b3f1f571b807d5268d1766b4ce307a79c6

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98405adc58b9fb119dceb7c6606b05304cf1e21826f7877e19c43c750b03386b
MD5 ed9d5f3f47fdb125a1f70444928dbc7d
BLAKE2b-256 490ae6276b383d661d7ce13c7551065b256458ca8b647c5e093fa978ee3cdb4f

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 deb724e8af31d3d6bd135b88cf7a17fc457af02a27796fcade9a14b9747c36c0
MD5 d6a03faac5346a9cb3d858e463722c2e
BLAKE2b-256 912d796967650e7d4a23c5849358bcac9534efcf1a4b332084fe04b091a8fee0

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.14.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for vispy-0.14.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6d944ccd0d7fb1b8fa694781cb036cb1011853e6d3e1038f5b4da4d0094ed9a1
MD5 618e2486e6024185a5b5382e748bbc67
BLAKE2b-256 1f2b208448d84838b4ded8240dc979f94bbc6a73f64ebd94e667b2a7e05f01fe

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9951832b2bc1f964d9fc916c207f7771357ca34747863cfbd4a7a34cbed76550
MD5 c07ed71b01035545009feec451660b5f
BLAKE2b-256 8152a5279c60b6cfd97e2a8ff250e7d56efc0aa5cd31b08dd2d5f4e6a1a46afc

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95f1e6463ffc8aca6fdb4101cb65196b2725ca9f677a267acf2c675c660d12dd
MD5 d4d98a468b8260db4bbf2cde76c577c4
BLAKE2b-256 b19549d44fe2fc0c476064f29c555ed6470dfb5066c0ccfea57506d90e6fbb42

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 721e076169075af80ae000b691a7d8b568a297deb9c3b781f6840b8e60c9514e
MD5 f7e20f56a37ab5156c5c587989734b15
BLAKE2b-256 a0a923c926bc851fb33fd13757f11fa6bf1d686928fc9ff4108e782195666992

See more details on using hashes here.

File details

Details for the file vispy-0.14.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.14.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e389673720aaff3ef647c9bbf15ebb0d50cfb7d959b59a321056087eec8ab7de
MD5 9a3e8a9510fbb97cdce9078890875d40
BLAKE2b-256 83937da10cac917411386494dfb073dc42a3c28fe14e4f38b75e8351c6788445

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page