Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See [CHANGELOG.md](./CHANGELOG.md).

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.8.0.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

vispy-0.8.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.8.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.8.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.8.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

vispy-0.8.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

vispy-0.8.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.8.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file vispy-0.8.0.tar.gz.

File metadata

  • Download URL: vispy-0.8.0.tar.gz
  • Upload date:
  • Size: 13.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for vispy-0.8.0.tar.gz
Algorithm Hash digest
SHA256 89533514ffe05b16dca142a0ca455a96d14de209a1620615b1d251fa28d54b9b
MD5 7fe632a37962cd764579fbe1ccf4d734
BLAKE2b-256 afd187470609505702c3fb9222a96b20ccf8196c3559fa8150d9fbc2bf42b323

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for vispy-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 27f2a5dd060b0d8c1fdf2a32b5ef523129858f21d93788b0bffc04363d2375e1
MD5 748bbb9c7e09bfb972b4835b45a30b3f
BLAKE2b-256 3a33f3dfe955e2e28f009053f48f15bc57013faf2959d33a24ba77127ea98a9b

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.8.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2edf2acffba3864d603b4b2a9277406741a3f9be01cd35c289023b21b2857c4a
MD5 a8de0b367bf1737339ed5abb2bfc4015
BLAKE2b-256 9c3b621bd57e9634723b20b35aa600cb088e3a32888fdb55a12e11f7be86a3ad

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 08e74e7991cef95db78d010add05dccbcf939a802b41066c446a1b73a35f8761
MD5 74208f308e15493e1e63131a70c12195
BLAKE2b-256 9d51ad1462a39cf6638ae4387763413cff4438a3a1da529db02fd49f2a86b5e1

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for vispy-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd0d4ff1f20ff7ba7bb20e7164b22f0984a007dea029aaa2cf110b7cd7cd333e
MD5 4f6aabcb2f31ada5626819ad25eb12af
BLAKE2b-256 1709c13703be4b613881c3ca024ddfd5a794572cf4e0fb6cd0244739b5c019f2

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for vispy-0.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ce409e19a3a0eba0efdf02dec5b1c59bedfae2c4470b160c589eecbdb806b457
MD5 4d9876decf656e56b77ca095802fe9f3
BLAKE2b-256 c8375623953f11b7d5adf7ffb603359f562a1562891a472ca7891c2ea2a6fead

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.8.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4afa9fd41fb786c1d30eee19994da8e8c5b109c3ed8e34645f7e6fee77d66e21
MD5 652020fb19b9806085c1cd1c339a0641
BLAKE2b-256 59139b0a9f25ec3dc4161c206dd28c3008dd912dadd707ce4437e16068e0bb98

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0bd38c2c8bfe33dc4fe4e74a96d200b38a0605de77461095bb911b3ef7736cf9
MD5 17d668f0cee4202e112480c75eb7b678
BLAKE2b-256 255909b1a5a9b1b3a2553347e295ca9dd8849afc4470c6eb6a7e19db6fb24ee6

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for vispy-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6fbe5417f68d4b4677f8443dbea6dc6ecaae49992c2649dbb64a493125df274e
MD5 f2f695f4624d91cb9944096e3c3c55f7
BLAKE2b-256 1a413cbe57c84d7cf75b5a537ec1c8a690b2958892ec5a392316fc441a1d1f83

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for vispy-0.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 455dbd9928edb9cb309548e4df780436901e1d29852a73afeff5072a4ab3d0cc
MD5 0351f5bf65b616c26877292eb47d6f17
BLAKE2b-256 89e2cdba6c38a6c9c4fdd310509a833cdd65324340f714af19501bdedd3b7a35

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.8.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1160cb1da7e77f2a9218e6009ec483c6c723fa7cfe4d59ea69cb00a080a52f98
MD5 2d84447164b937861b323b540eca99c5
BLAKE2b-256 86f217c680dc201081c3eeaddf525e7ca208af10aa90ab21492c966df15e2a0b

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.8.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9a057494c429d590c0d380181795b5334982c485d71abf2f8f75b170daeeb2c6
MD5 47b89075c89eca4e60a97fbacbdbc37a
BLAKE2b-256 37c7b42c23efde56a26917e9858187e9374059c0457deb171c8dfdad31cfc93d

See more details on using hashes here.

File details

Details for the file vispy-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for vispy-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ab1381c785afc12c2133e1710210bdd069bde73410f176393b7bccadf0bb751
MD5 fd062d235a0dab8ca03d6386defc215c
BLAKE2b-256 12cfa04c886f1c8895b1bdabc61fb5d96c9d8ff8f5632fab42aba1cf37302928

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page