Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See [CHANGELOG.md](./CHANGELOG.md).

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.8.1.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

vispy-0.8.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.8.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.8.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.8.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.8.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.8.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

vispy-0.8.1-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

vispy-0.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.8.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file vispy-0.8.1.tar.gz.

File metadata

  • Download URL: vispy-0.8.1.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for vispy-0.8.1.tar.gz
Algorithm Hash digest
SHA256 6e482e68487f5384205d349f288580d6287fd690df4cdc3ad4c573afc39990f1
MD5 21a8a4c9246ab53c1a377497386f4a92
BLAKE2b-256 7638ab80bc12664708f1e87742e701cbadc5488515b993fe4e854f9a92472fcc

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for vispy-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 29a3d81a75d03fdb6177c29fd8038ec91bba8bfc05faa8c31723ed9516c2a2ac
MD5 31a8e86b2de1ce4b2ee6c54893bc145d
BLAKE2b-256 9d5532ee53a3adac03fe837794e54cfd2122badae2e1bd54a635d7ae9501bd3b

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.8.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b520a1133fd5bd26377b233678db06c89286004e9527a0696fb8d87cfddda68f
MD5 5396558b18b97c779fda91fcd8584f53
BLAKE2b-256 d5030f97bcaa4f6ac50e544b58fcff3cc8943e6bd20a29bdf32c5c7015553f6f

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.8.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 48567eb98eb05611cdb136d6f7ee08e9cfef251aa1e8099eb781adaa13e53fc1
MD5 86224bbe2a920822b435350a408a78b6
BLAKE2b-256 a2d4743eaf121b7ac2e44e3254d689060290f0f4906bd1d20ae904413889eeb0

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for vispy-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f673edea9b04c38e95d0dd6a44f4f5192dab9934752201d1c6f66ef4ec26218
MD5 ddce20989e303da2c14b54d937f69d37
BLAKE2b-256 795c3c6f66e16738e1f784588cdae4a1e6b330fd22844c6606c5912d27183b88

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for vispy-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ad071e58bbc405ccf3772884020a2d5668e67cba79c4d8e73ae4046432406575
MD5 fde881a6ed4195d2e1eb56d08b22245c
BLAKE2b-256 d74c6668a1ba87c7ec5b333f323811803928bf3c5f7e819913521459efee6b00

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.8.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74ff941eb117f4f1323123014540706bfc8f783a7010ae93f307e3e789ff3428
MD5 581416b12c7c723c95562d5e7116294d
BLAKE2b-256 612370a05a00c669c8e4338d7e3da0b57f87080261e951c40d7fa0c206c5e2f7

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.8.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6040a4aaa438a232862a515dc7543b8561ba999ebbf16e8b98d13023639cc126
MD5 545badd7497e5c46cc2ef8bf0b87fd5e
BLAKE2b-256 3f59bb4102a3c870fb0bb3aae8ce969ce2e60f34dd39e854e1fbab61d2fe3297

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for vispy-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3214ca5005cad9514da811c7cf90000cd8a3c51906bc1777fa9e005f2f1c248c
MD5 b796fc2f73778f7dcf3891e631bb6b6a
BLAKE2b-256 18dbb6e2174bf99a0cc271454250febb754a104df02280a1aa7a63e7b3de8f26

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for vispy-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7927d1acde9dbc0b76deb2ca2fe35d93ce8b3eed88d89799afa7269867d89e2a
MD5 5903a401769935236b32bb896a86c18e
BLAKE2b-256 4892be2d754b67711da0e950637b8212faff74cf2513ce8de8cb2826bdc8f2dc

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09eab382a874adf4d6c2bfde043e619c562c2a61c9adcb3768eca0acad7d8b8c
MD5 085c4ec55af6bc3692a93a0bbc228dfa
BLAKE2b-256 e7edb014e4511ffb99d133248304b84bf4276274430832a744b781be26e9da9d

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.8.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 65eb92f1285f98f48c5fc1a84eb6797c2cbbf8c38ca32aeb59d015695a1451ae
MD5 7b155e11e0e5e80cce30b0876998d6a3
BLAKE2b-256 9da9a16e5aec54308d06ddc8edda72c146017831eb051277a3e637d5f0e2bf19

See more details on using hashes here.

File details

Details for the file vispy-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for vispy-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48f45d2d877474f43d47359c1de22817830287ebfda4b076318c7b2024130b06
MD5 65b00faf2eb0d08151c8605eae6531ef
BLAKE2b-256 cef3e08194184831a1e0e73bbfab942d26e0eeeabcde8a2bada1842f3b2296d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page