Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See [CHANGELOG.md](./CHANGELOG.md).

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.9.0.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

vispy-0.9.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.9.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.9.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.9.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.9.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.9.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

vispy-0.9.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

vispy-0.9.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.9.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file vispy-0.9.0.tar.gz.

File metadata

  • Download URL: vispy-0.9.0.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.0.tar.gz
Algorithm Hash digest
SHA256 41a6836aa78462370fe15efaade94cbe3344586412f8d7f12689c49c299ff41b
MD5 8e80552d18472d2a49d27637a0553fc4
BLAKE2b-256 ebf43fb735fae6b97140ba86e49bdf4ade1bea2abefb8acb433ee2b8873440da

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e2c9ff4ef4b52ee2251416a96a6866bf80ce41fce911e0a31fd73e55a8a8b0a3
MD5 0d15d55d816fdd6458a177109eb85fb2
BLAKE2b-256 4ca863aa31564b795b31c5d33e7ffbab9f1833ded1f68c5af2b4315901d69d87

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.9.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 470a062389b18122a4749c1d78e91a77aeedbcf4d57af2a27c1fa6965d9ca59b
MD5 1744c7575b80dadda07d106935dfcbbf
BLAKE2b-256 edbe4a48793eae5feed85e023030e7d2a8916ebf4f44262bb8d0a6a1c582f988

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.9.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fc8808decddc2869137d628893aa3dba35ebe40534798361604d50807bc3e0ea
MD5 088d97083091ac5f6e8d86e85701b4ea
BLAKE2b-256 e909c5cc64bad82459a63130c6be1c9e146adb9ba18148fa4d0cd86024ebcb58

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b953d221d3ee6b7bea0f1b437a718c17b4050356e28d00ad30873a73c68bd16a
MD5 26bab73864c7cc0a290f54435af169b3
BLAKE2b-256 bec378320a290024512e8ae480f8870e909bb147c529091e03e00f7de944bf3a

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ba390afebed6e77550c209fae2cc6b27c16ba5b9e6d1dc28a19873f09c0fe7fe
MD5 7008a5005e830202108cb40d382fce39
BLAKE2b-256 45deeb533cec5687c2e5eddc3a9d905a8fb601aba448af6ca30982db16e9c548

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.9.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 377e13e3e343825deb823b5d49774a45dbd5706edf025cffb739cef3daed1a33
MD5 115f8b2ebfeaccd8014b1b04b3ce8599
BLAKE2b-256 f4d0a08a011c34fdbf410f8b219ff9792652d5099840ed09b4319ce4a6ff23ce

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.9.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 854029351dce292b7b99b5950e686bad8628779fc6bb9de6091b4c7eccff1ac9
MD5 5bee716080149c41a6766d6ddc455541
BLAKE2b-256 05c9fce32c8574b2a65961019301de57cc425a31bc05c5755eb9023bf228b096

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a809019df5bdc79cf43150369b0f2dd0eb54d9e3ce19f7e480cb31017f82924f
MD5 83aaf092784e2a1a12bf5c2309faafa7
BLAKE2b-256 d2f5935e6adbf6a7b2a84f94fc91ebb0c4d3231f9767d6d4f3949cceb65a6746

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c4120b65b78ba53b53d57a4eeb8d4d376d66ec6ab04d0e8b5cc3aea52ddce664
MD5 28919fd413900c64c528160f530873e6
BLAKE2b-256 2452977f85984898899f0f8210be6b3a68708130db5df5b44b068973671b0fcd

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.9.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbe8ad6ca2da3402ab67b0c4584c91fdb16a33229480b086c792d8ca40f595f6
MD5 27cc96d999f77dc489a0dc490b9db630
BLAKE2b-256 55a400d0d8b67f5c7d4d0acbc441da589416e270a5c044988dd6cb4adbb44ace

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.9.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 876407fb0b5a0d166607cb89be76cc0cfd86023e61babfd72e19df2114109758
MD5 65c341eeb0fb73fb7b9a3c7d9a45cba2
BLAKE2b-256 c0ed5df63b24cf57ff1640269a53d6647b255467b2858d2d26ea0831a5fe0fc9

See more details on using hashes here.

File details

Details for the file vispy-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a3c9d623ad19149941e96ee09ffd2a3449f7bb3fa999c7e8f7da25dbf183270
MD5 382cf3c61b23949595c83a8585639700
BLAKE2b-256 1d330a266874ebfa8f301d892b908f453ccee53f83f2fd1c49b7d566b5569e13

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page