Skip to main content

Interactive visualization in Python

Project description

VisPy: interactive scientific visualization in Python

Main website: http://vispy.org

Build Status Coverage Status Zenodo Link Contributor Covenant


VisPy is a high-performance interactive 2D/3D data visualization library. VisPy leverages the computational power of modern Graphics Processing Units (GPUs) through the OpenGL library to display very large datasets. Applications of VisPy include:

  • High-quality interactive scientific plots with millions of points.

  • Direct visualization of real-time data.

  • Fast interactive visualization of 3D models (meshes, volume rendering).

  • OpenGL visualization demos.

  • Scientific GUIs with fast, scalable visualization widgets (Qt or IPython notebook with WebGL).

Releases

See [CHANGELOG.md](./CHANGELOG.md).

Announcements

See the VisPy Website.

Using VisPy

VisPy is a young library under heavy development at this time. It targets two categories of users:

  1. Users knowing OpenGL, or willing to learn OpenGL, who want to create beautiful and fast interactive 2D/3D visualizations in Python as easily as possible.

  2. Scientists without any knowledge of OpenGL, who are seeking a high-level, high-performance plotting toolkit.

If you’re in the first category, you can already start using VisPy. VisPy offers a Pythonic, NumPy-aware, user-friendly interface for OpenGL ES 2.0 called gloo. You can focus on writing your GLSL code instead of dealing with the complicated OpenGL API - VisPy takes care of that automatically for you.

If you’re in the second category, we’re starting to build experimental high-level plotting interfaces. Notably, VisPy now ships a very basic and experimental OpenGL backend for matplotlib.

Installation

Please follow the detailed installation instructions on the VisPy website.

Structure of VisPy

Currently, the main subpackages are:

  • app: integrates an event system and offers a unified interface on top of many window backends (Qt4, wx, glfw, jupyter notebook, and others). Relatively stable API.

  • gloo: a Pythonic, object-oriented interface to OpenGL. Relatively stable API.

  • scene: this is the system underlying our upcoming high level visualization interfaces. Under heavy development and still experimental, it contains several modules.

    • Visuals are graphical abstractions representing 2D shapes, 3D meshes, text, etc.

    • Transforms implement 2D/3D transformations implemented on both CPU and GPU.

    • Shaders implements a shader composition system for plumbing together snippets of GLSL code.

    • The scene graph tracks all objects within a transformation graph.

  • plot: high-level plotting interfaces.

The API of all public interfaces are subject to change in the future, although app and gloo are relatively stable at this point.

Code of Conduct

The VisPy community requires its members to abide by the Code of Conduct. In this CoC you will find the expectations of members, the penalties for violating these expectations, and how violations can be reported to the members of the community in charge of enforcing this Code of Conduct.

Genesis

VisPy began when four developers with their own visualization libraries decided to team up: Luke Campagnola with PyQtGraph, Almar Klein with Visvis, Cyrille Rossant with Galry, Nicolas Rougier with Glumpy.

Now VisPy looks to build on the expertise of these developers and the broader open-source community to build a high-performance OpenGL library.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vispy-0.9.1.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

vispy-0.9.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

vispy-0.9.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.9.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

vispy-0.9.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

vispy-0.9.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.9.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

vispy-0.9.1-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

vispy-0.9.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

vispy-0.9.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

vispy-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file vispy-0.9.1.tar.gz.

File metadata

  • Download URL: vispy-0.9.1.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.1.tar.gz
Algorithm Hash digest
SHA256 75e2923792b937fbb0eb817716430613b6a2b37331cffb13bf623913a76b1da1
MD5 e163f8237cdb9420260c575d2dd451b5
BLAKE2b-256 776041147d09fe6d1f85010fa1b73fb38e2b83cdacf26275ab31fc6d9bd694ed

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vispy-0.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2366f72adca3c9836052f7a06620a0ccc1ceb37e2cee52a5a1290c77bab0a601
MD5 4a0efc128adca7fa579cc1f18802f804
BLAKE2b-256 a170be69de7f531c844a380a259c1f29cf979b9ec4b64e5d46488347c6d998d8

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.9.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f271a1f4aca4ed5644e41dbd7a8fcd3fcea85c75ec3ba76db4772c69fce04d03
MD5 62dbba7ee106c3227195e88337ccd184
BLAKE2b-256 b117fa71d9460a8df71d4c54c1911a9079c30fb56dfc95ede85eb68857b3f71b

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.9.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bbe16207666a9a5288c55bef6040334293f1a5a689d5cfb8c45d66838de46b02
MD5 a8b1c32a51a217a55d32b4a6ba846dc3
BLAKE2b-256 e1b094618616965bf3ef35ae0ca23df41e72a4396050da81eaba93d4aa46aaaf

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ee15d316c8585fec01fbc59d6fb1a4f4944191fa0e7992b8fa4665df87533b4
MD5 ff5c490b871ee0fe586cc5e4c3dd3396
BLAKE2b-256 e98a0b341af98cfba24ab893f0a04191a28e13fe90a522a91c88b91adb4d0b2a

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: vispy-0.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0f7319e4c0ad7f6831791aca13564e3f5493750d01608a7e85841b88ce40a536
MD5 bfb59966acedad6a56201a57edd0c9a2
BLAKE2b-256 e1be058f31ac1b10daac22f23cdc81be0ae1bfe72d07293a0355b54b7744be41

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.9.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4cda7ec69705bcac369393642d7437f3ff56bb94587e9773746c6747e6499116
MD5 126249c635b9be51edd3df3498cb8e08
BLAKE2b-256 2a8499adc35eabc70febaa8cf1df757ebb59670afa1d68c06ea419ae7c6e885f

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.9.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 69312c3167feadce69986b95980eb96fd7c46883278380d5016473272399172a
MD5 f232891fef06771241aff19d7ddd28f5
BLAKE2b-256 2d7a049c428498b32cbbabbbd34328cfb53e6be02c32c00436e15578a61ed836

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43bb27804e822a631d7aa454c35a6f066d5501423506d9fceca71c3f20074fb3
MD5 3172a28a4533321f2c9fb2d8e5e7413d
BLAKE2b-256 1877b744be393936cc039afc97cf7b083232fd9ca93e97fc7c600a35777112f9

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: vispy-0.9.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d094a7a6bade45c1aea688746fc98df668b10f6956ffa9a382b51d716bc630f1
MD5 25484dce0410edb17e3b7389d794b8b9
BLAKE2b-256 f541966ffdcce0267afc3da437bb8a1c18a364eb1ccea7ed816bb4c38fa55959

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vispy-0.9.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e395e4962c87dc273b7f88a5e11e4fe3710e59f074a13444976d903996b4538a
MD5 77c89735b3d6def68eaa46f538e8e3cd
BLAKE2b-256 64b89131c0cc79218d242c0b0dd286e56def05e823f22c5b637c8b0da2ba0ee6

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for vispy-0.9.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2058dc9cd00c36f02d8f453e82075543dc8b6b4066841e6af9ef6bdc8ad49ca8
MD5 74fb221266e38ae7f3e3fa1080ad39a5
BLAKE2b-256 890d12e4bfd08bdbd1ef8186108e62c17e4dd9f51f1974c50e2f8a2f2d79d1c0

See more details on using hashes here.

Provenance

File details

Details for the file vispy-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: vispy-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for vispy-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b4808041bd296b9e17db30acdb36a1fef837206ad89f5e79dfa5ffa17436123
MD5 6d29a3bc80be68e585e9de494a9fd033
BLAKE2b-256 a157627fb30b0b62dac224aa5e7afd6548d51dfd0cdc4537a120d3b09d73b725

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page