Skip to main content

ViZDoom is Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information.

Project description

PyPI version Build and test pre-commit Code style: black

ViZDoom allows developing AI bots that play Doom using only visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

ViZDoom is based on ZDoom engine to provide the game mechanics.

ViZDoom Demo

Features

  • Multi-platform (Linux, macOS, Windows),
  • API for Python and C++,
  • Gymnasium/OpenAI Gym environment wrappers (thanks to Arjun KG Benjamin Noah Beal, Lawrence Francis, and Mark Towers),
  • Easy-to-create custom scenarios (visual editors, scripting language, and examples available),
  • Async and sync single-player and multiplayer modes,
  • Fast (up to 7000 fps in sync mode, single-threaded),
  • Lightweight (few MBs),
  • Customizable resolution and rendering parameters,
  • Access to the depth buffer (3D vision),
  • Automatic labeling of game objects visible in the frame,
  • Access to the audio buffer (thanks to Shashank Hegde),
  • Access to the list of actors/objects and map geometry,
  • Off-screen rendering,
  • Episodes recording,
  • In-game time scaling in async mode.

ViZDoom API is reinforcement learning friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning, etc.).

Julia (thanks to Jun Tian), Lua, and Java bindings are available in other branches but are no longer maintained.

Cite as

M Wydmuch, M Kempka & W Jaśkowski, ViZDoom Competitions: Playing Doom from Pixels, IEEE Transactions on Games, vol. 11, no. 3, pp. 248-259, 2019 (arXiv:1809.03470)

@article{Wydmuch2019ViZdoom,
  author  = {Marek Wydmuch and Micha{\l} Kempka and Wojciech Ja\'skowski},
  title   = {{ViZDoom} {C}ompetitions: {P}laying {D}oom from {P}ixels},
  journal = {IEEE Transactions on Games},
  year    = {2019},
  volume  = {11},
  number  = {3},
  pages   = {248--259},
  doi     = {10.1109/TG.2018.2877047},
  note    = {The 2022 IEEE Transactions on Games Outstanding Paper Award}
}

or

M. Kempka, M. Wydmuch, G. Runc, J. Toczek & W. Jaśkowski, ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning, IEEE Conference on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, 2016 (arXiv:1605.02097)

@inproceedings{Kempka2016ViZDoom,
  author    = {Micha{\l} Kempka and Marek Wydmuch and Grzegorz Runc and Jakub Toczek and Wojciech Ja\'skowski},
  title     = {{ViZDoom}: A {D}oom-based {AI} Research Platform for Visual Reinforcement Learning},
  booktitle = {IEEE Conference on Computational Intelligence and Games},
  year      = {2016},
  address   = {Santorini, Greece},
  month     = {Sep},
  pages     = {341--348},
  publisher = {IEEE},
  doi       = {10.1109/CIG.2016.7860433},
  note      = {The Best Paper Award}
}

Python quick start

Versions 1.2.3 and below do not work correctly with NumPy 2.0+. To use NumPy 2.0+ please upgrade ViZDoom to version 1.2.4+.

Linux

To install the latest release of ViZDoom, just run:

pip install vizdoom

Both x86-64 and AArch64 (ARM64) architectures are supported. Wheels are available for Python 3.8+ on Linux.

If Python wheel is not available for your platform (Python version <3.8, distros below manylinux_2_28 standard), pip will try to install (build) ViZDoom from the source. ViZDoom requires a C++11 compiler, CMake 3.12+, Boost 1.54+ SDL2, OpenAL (optional), and Python 3.8+ to install from source. See documentation for more details.

macOS

To install the latest release of ViZDoom, just run:

pip install vizdoom

Both Intel and Apple Silicon CPUs are supported. Pre-build wheels are available for Intel macOS 12.0+ and Apple Silicon macOS 14.0+.

If Python wheel is not available for your platform (Python version <3.8, older macOS version), pip will try to install (build) ViZDoom from the source. In this case, install the required dependencies using Homebrew:

brew install cmake boost sdl2

We recommend using at least macOS High Sierra 10.13+ with Python 3.8+. On Apple Silicon (M1, M2, and M3), make sure you are using Python/Pip for Apple Silicon.

Windows

To install the latest release of ViZDoom, just run:

pip install vizdoom

At the moment, only x86-64 architecture is supported on Windows. Wheels are available for Python 3.9+ on Windows.

Please note that the Windows version is not as well-tested as Linux and macOS versions. It can be used for development and testing but if you want to conduct serious (time and resource-extensive) experiments on Windows, please consider using Docker or WSL with Linux version.

Gymnasium/Gym wrappers

Gymnasium environments are installed along with ViZDoom. See documentation and examples on the use of Gymnasium API.

OpenAI-Gym wrappers are also available, to install them run:

pip install vizdoom[gym]

See documentation and examples on the use of Gym API. OpenAI-Gym wrappers are deprecated and will be removed in future versions in favor of Gymnasium.

Examples

  • Python (contain learning examples implemented in PyTorch, TensorFlow, and Theano)
  • C++

Python examples are currently the richest, so we recommend looking at them, even if you plan to use C++. The API is almost identical between the languages, with the only difference being that Python uses snake_case and C++ camelCase for methods and functions.

Original Doom graphics

Unfortunately, we cannot distribute ViZDoom with original Doom graphics. If you own original Doom or Doom 2 games, you can replace Freedoom graphics by placing doom.wad or doom2.wad into your working directory or vizdoom package directory.

Alternatively, any base game WAD (including other Doom engine-based games and custom/community games) can be used by pointing to it with the set_doom_game_path/setDoomGamePath method.

Documentation

Detailed descriptions of all ViZDoom types and methods can be found in the documentation.

Full documentation of the ZDoom engine and ACS scripting language can be found on ZDoom Wiki.

Useful articles (for advanced users who want to create custom environments/scenarios):

Awesome Doom tools/projects

  • SLADE3 - Great Doom map (scenario) editor for Linux, MacOS and Windows.
  • Doom Builder 2 - Another great Doom map editor for Windows.
  • OBLIGE - Doom random map generator and PyOblige is a simple Python wrapper for it.
  • Omgifol - Nice Python library for manipulating Doom maps.
  • NavDoom - Maze navigation generator for ViZDoom (similar to DeepMind Lab).
  • MazeExplorer - A more sophisticated maze navigation generator for ViZDoom.
  • Sample Factory - A high-performance reinforcement learning framework for ViZDoom.
  • EnvPool - A high-performance vectorized environment for ViZDoom.
  • Obsidian - Doom random map generator, a continuation of OBLIGE.
  • LevDoom - Generalization benchmark in ViZDoom featuring difficulty levels in visual complexity.
  • COOM - Continual learning benchmark in ViZDoom offering task sequences with diverse objectives.

Contributions

This project is maintained and developed in our free time. All bug fixes, new examples, scenarios, and other contributions are welcome! We are also open to feature ideas and design suggestions.

We have a roadmap for future development work for ViZDoom available here.

License

The code original to ViZDoom is under MIT license. ZDoom uses code from several sources with varying licensing schemes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vizdoom-1.2.4.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

vizdoom-1.2.4-cp312-cp312-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

vizdoom-1.2.4-cp312-cp312-manylinux_2_28_x86_64.whl (28.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

vizdoom-1.2.4-cp312-cp312-manylinux_2_28_aarch64.whl (27.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

vizdoom-1.2.4-cp312-cp312-macosx_14_0_arm64.whl (29.2 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

vizdoom-1.2.4-cp312-cp312-macosx_12_0_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

vizdoom-1.2.4-cp311-cp311-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

vizdoom-1.2.4-cp311-cp311-manylinux_2_28_x86_64.whl (28.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

vizdoom-1.2.4-cp311-cp311-manylinux_2_28_aarch64.whl (27.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

vizdoom-1.2.4-cp311-cp311-macosx_14_0_arm64.whl (29.2 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

vizdoom-1.2.4-cp311-cp311-macosx_12_0_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

vizdoom-1.2.4-cp310-cp310-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

vizdoom-1.2.4-cp310-cp310-manylinux_2_28_x86_64.whl (28.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

vizdoom-1.2.4-cp310-cp310-manylinux_2_28_aarch64.whl (27.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

vizdoom-1.2.4-cp310-cp310-macosx_14_0_arm64.whl (29.2 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

vizdoom-1.2.4-cp310-cp310-macosx_12_0_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

vizdoom-1.2.4-cp39-cp39-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

vizdoom-1.2.4-cp39-cp39-manylinux_2_28_x86_64.whl (28.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

vizdoom-1.2.4-cp39-cp39-manylinux_2_28_aarch64.whl (27.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

vizdoom-1.2.4-cp39-cp39-macosx_14_0_arm64.whl (29.2 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

vizdoom-1.2.4-cp39-cp39-macosx_12_0_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

vizdoom-1.2.4-cp38-cp38-manylinux_2_28_x86_64.whl (28.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

vizdoom-1.2.4-cp38-cp38-manylinux_2_28_aarch64.whl (27.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

vizdoom-1.2.4-cp38-cp38-macosx_14_0_arm64.whl (29.2 MB view details)

Uploaded CPython 3.8 macOS 14.0+ ARM64

vizdoom-1.2.4-cp38-cp38-macosx_12_0_x86_64.whl (30.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

File details

Details for the file vizdoom-1.2.4.tar.gz.

File metadata

  • Download URL: vizdoom-1.2.4.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for vizdoom-1.2.4.tar.gz
Algorithm Hash digest
SHA256 bf60251ae66c1a05dbf7a66e3bd3c46c7842b272dcfd38a0db7ce2904edfbc2d
MD5 a0cf353e0258b10051a32602e2de7683
BLAKE2b-256 c3b068e2ae7d48d8420402db35c404c6b699f3d0d018153660ef0235e1ca8691

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: vizdoom-1.2.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for vizdoom-1.2.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cff1ae7c6d728958e297272b7357060906f59962838790bc82103ed377414786
MD5 74c091ce2dfdbd760e9ec89f006dd311
BLAKE2b-256 587ff81bd4f9f5bd26fa7bc7ccb3a59580a630cdbce3e74a7c3eec8d53e6a00c

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c7daa5b1f45ba916b219713de7d80c35f235cec843b161ac080a0c8b4849eee2
MD5 ce098a509f03c5343db6e562b55cd832
BLAKE2b-256 7b408c374710e99fd91d94e9a2885a9c6cecef5414cef44838781797819f2e27

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bad3f070841395acaf5d1c09cca95d1aa6cc86a6c23ae1477e48f378364acee9
MD5 13f2d3905bdadff6587605a4d32c9269
BLAKE2b-256 35d8b4fba3318e4104c0e3fd934269627fc0d68d15c610393b1644c926dd1878

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f3f3365f11d99bdb7ef164a78d5f51299947c544faf477384d7bd983fef456fe
MD5 ecae5e86b6aa899739fe8bc10d03850b
BLAKE2b-256 059b3f7e2a4d79431bcf2eb8d2afc11c125a6efad5127bb778d271ac8cc46055

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 3d9ebc9074157fed67860758158eebacf0646bcea24359acfe7d9ad711528a0c
MD5 228464116e644f39f08d715ac96e5a12
BLAKE2b-256 f56e1e489d3a9db1cb083255c6024717f5fa2a7ef67b65247cfc9e116e489375

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: vizdoom-1.2.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for vizdoom-1.2.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8eefe39cc38a69c60706ac78b35d92547fd4c5d3d74536da911037762dbdb489
MD5 f45ee54826a7d73109c681652f615dd6
BLAKE2b-256 52cf126a9b27a41ed8d9c5039590e7e0c50b0d78b06265efb530a00619c8bf80

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ce3ecb23abb5c3e58213f1ce12bdf30be9bb856a94b9d86610ac378be712c0fd
MD5 e69bbc770e9f7934614d2495c70d7390
BLAKE2b-256 2e2afb6d8dffa72cc84fc965f6a5c5c0265575a43edf5f25175c0603816404be

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6247cca5e3a5d2e7db0239a9528a13c372ac9da70c84ea472b72ed94cac622ac
MD5 7ecac27b3464573b0c614ec0fe83904e
BLAKE2b-256 44e348fb3b048bf9ec5fa5b856ed607fdd2f6c4b4543dc8cd0a9c305086be6ae

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8e1937448853fb288ae7bfe1da7e64ebea178143df85bb68ede18c077abd4244
MD5 832980aa4b6ed714a7a2b08363c3ba95
BLAKE2b-256 938e44546ebaadac170ad906ed6eb068f2a283895843d7d248f60f971656d013

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 a585a56e04a74658585ef36a12abae21b99da834aff888ff317670bbd0f23fbe
MD5 823a70301fe73c1856a4afa0f3fb89d7
BLAKE2b-256 057d378e2d7901335ae6e5c697581298bbe15f63dfb18a818364a7cdb368653b

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: vizdoom-1.2.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for vizdoom-1.2.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bea3225a05848fb577cd237ca40b0838665b4452f5cf647b2f9762ebc8d41522
MD5 2530e48e040d0e407e4ff4cb18b2c1e7
BLAKE2b-256 5548992b9cf4fb9930e043dc925e8a853f0921066af5dcbbf6389fda4945fc43

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 866d01582af7dec6e78e77faf1a5b10f3b6ac25f252b31c994c7715cd4c891b3
MD5 162005f38122c082c0b13fe9a1eafa10
BLAKE2b-256 b9b85ff438b30b8eeda480c94caa4e05fb4f85f3023d5606722bd6915ae11f36

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fda75e11d9015f12fff65cc36e9c2e6940902cd5b61e60be00fa66190be418b8
MD5 c5f68e7f2ba05ec946658b8b8223656a
BLAKE2b-256 1c275e4eb90a16b6ab67ef3a491ae00e9255aa6e3c365165925ba6146b1b553e

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a9cd8b99abf09764439f2a82ee87f2d9df86e784774bb0d1fd560e5c801faa34
MD5 0d34fe587dd1d2f492044105a7a0c31e
BLAKE2b-256 d6b85006d6db6265572d70bd758f2dcfb52ac9aadc770149d2a81204eb0227a0

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b37ebc5e6c0c3e585bf5d4c0d2b7deeab96742e01fda92e19ceb2fbd0bd629b7
MD5 ae7232e8aed458c1dfcf7464ed911a30
BLAKE2b-256 5b25b3294f7189fb47e8ace818ec677e880859c950477ea0cca581f1e3d8e97f

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: vizdoom-1.2.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for vizdoom-1.2.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 408f67510e61d50f32f18d09613efcf263675273cfdce0dbee91d5abc075d5e5
MD5 f5b04c0d2649fe595b633e8c48a5bcb7
BLAKE2b-256 11f1425cad8ff6101b7ffec0143f98098e3dab7752a65b7734a551af237ce647

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7c2089e5b3d43f4e4f04a83b46a81bd196545c704daf18c978959cad54a2bfa6
MD5 2cba31cb5d703ceafc189980fe884649
BLAKE2b-256 2be8b439a776acf8ada88c138e0e0053bc43ea849e39010497ee548d04ff15b4

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c77c2caa7fe5aa2566b19d605259b3f8e0ee5436416aff6e527caea4b46803db
MD5 5c577da3c37e12933208825537e66c16
BLAKE2b-256 8d54cf49a142012b7f552c16765db83d8357620de376ae08dd60207f00df0e69

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 51daad393d694e34a0341aafe51875f20b25883f6db558846b49574e6cbd8c25
MD5 72fbc0b3ab31fa476df640eb8096e684
BLAKE2b-256 839e8e72250f0d0d8187a97d33b142acc3f8b7217202020fa268c45bfd27acce

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 aa4b926d8b2a98e76f0079f962f952e2f3f3c02b61adbca2c13225164bab9d68
MD5 dce983b7db5e80049d2e413ddcf436b6
BLAKE2b-256 448ebed39b93a1123fc43d9624cbf00a0603200d34b606b4d187203a76aaafe8

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 24c3da03a12013a0a23dbc657a136dc8c0ea773b661023345d926e9ff6f0b868
MD5 9aae02382c73f4c0af60cb745e2d18c1
BLAKE2b-256 79a14f7fc7a534e2828269f28017f8d0ddc8a6415085baf54a670fca9a9947cc

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 aa223d1cfb50996199d08ce7fb1e0e912c73015932d2f766361e3e054ad88450
MD5 9d13d7b5566824858e0cb15d22d323bd
BLAKE2b-256 656dd10c29e3ce5b04ce1d0bbad3984d846e92d0754468055c45b483c0bdf413

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 dab47d191c43d48dd8d3e95b93cf5e3922d7569be9c3cb9a44063dbe14b60b27
MD5 006e9e71db1895dab4a179b1bdec4ca0
BLAKE2b-256 4ebba50eac79666a3a7a37edec810b9655ee07e550e1b6453809306715931690

See more details on using hashes here.

File details

Details for the file vizdoom-1.2.4-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for vizdoom-1.2.4-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 e6b14a2ae19d3d4438456ccd5b9f97e283d32462540fc7ececa7d661280be02b
MD5 e82787681b197bb2a6c7e128b7a8673d
BLAKE2b-256 19445eb00f892ddb77e3ce09bb2990ff4e25dae5778e0265106d2c15ee3058f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page