Skip to main content

Vladiate is a strict validation tool for CSV files

Project description

https://travis-ci.org/di/vladiate.svg?branch=master https://coveralls.io/repos/di/vladiate/badge.svg?branch=master Requirements Status

Description

Vladiate helps you write explicit assertions for every field of your CSV file.

Features

Write validation schemas in plain-old Python

No UI, no XML, no JSON, just code.

Write your own validators

Vladiate comes with a few by default, but there’s no reason you can’t write your own.

Validate multiple files at once

Either with the same schema, or different ones.

Documentation

Installation

Installing:

$ pip install vladiate

Quickstart

Below is an example of a vladfile.py

from vladiate import Vlad
from vladiate.validators import UniqueValidator, SetValidator
from vladiate.inputs import LocalFile

class YourFirstValidator(Vlad):
    source = LocalFile('vampires.csv')
    validators = {
        'Column A': [
            UniqueValidator()
        ],
        'Column B': [
            SetValidator(['Vampire', 'Not A Vampire'])
        ]
    }

Here we define a number of validators for a local file vampires.csv, which would look like this:

Column A,Column B
Vlad the Impaler,Not A Vampire
Dracula,Vampire
Count Chocula,Vampire

We then run vladiate in the same directory as your .csv file:

$ vladiate

And get the following output:

Validating YourFirstValidator(source=LocalFile('vampires.csv'))
Passed! :)

Handling Changes

Let’s imagine that you’ve gotten a new CSV file, potential_vampires.csv, that looks like this:

Column A,Column B
Vlad the Impaler,Not A Vampire
Dracula,Vampire
Count Chocula,Vampire
Ronald Reagan,Maybe A Vampire

If we were to update our first validator to use this file as follows:

- class YourFirstValidator(Vlad):
-     source = LocalFile('vampires.csv')
+ class YourFirstFailingValidator(Vlad):
+     source = LocalFile('potential_vampires.csv')

we would get the following error:

Validating YourFirstFailingValidator(source=LocalFile('potential_vampires.csv'))
Failed :(
  SetValidator failed 1 time(s) (25.0%) on field: 'Column B'
    Invalid fields: ['Maybe A Vampire']

And we would know that we’d either need to sanitize this field, or add it to the SetValidator.

Starting from scratch

To make writing a new vladfile.py easy, Vladiate will give meaningful error messages.

Given the following as real_vampires.csv:

Column A,Column B,Column C
Vlad the Impaler,Not A Vampire
Dracula,Vampire
Count Chocula,Vampire
Ronald Reagan,Maybe A Vampire

We could write a bare-bones validator as follows:

class YourFirstEmptyValidator(Vlad):
    source = LocalFile('real_vampires.csv')
    validators = {}

Running this with vladiate would give the following error:

Validating YourFirstEmptyValidator(source=LocalFile('real_vampires.csv'))
Missing...
  Missing validators for:
    'Column A': [],
    'Column B': [],
    'Column C': [],

Vladiate expects something to be specified for every column, even if it is an empty list (more on this later). We can easily copy and paste from the error into our vladfile.py to make it:

class YourFirstEmptyValidator(Vlad):
    source = LocalFile('real_vampires.csv')
    validators = {
        'Column A': [],
        'Column B': [],
        'Column C': [],
    }

When we run this with vladiate, we get:

Validating YourSecondEmptyValidator(source=LocalFile('real_vampires.csv'))
Failed :(
  EmptyValidator failed 4 time(s) (100.0%) on field: 'Column A'
    Invalid fields: ['Dracula', 'Vlad the Impaler', 'Count Chocula', 'Ronald Reagan']
  EmptyValidator failed 4 time(s) (100.0%) on field: 'Column B'
    Invalid fields: ['Maybe A Vampire', 'Not A Vampire', 'Vampire']
  EmptyValidator failed 4 time(s) (100.0%) on field: 'Column C'
    Invalid fields: ['Real', 'Not Real']

This is because Vladiate interprets an empty list of validators for a field as an EmptyValidator, which expects an empty string in every field. This helps us make meaningful decisions when adding validators to our vladfile.py. It also ensures that we are not forgetting about a column or field which is not empty.

Built-in Validators

Vladiate comes with a few common validators built-in:

class Validator

Generic validator. Should be subclassed by any custom validators. Not to be used directly.

class CastValidator

Generic “can-be-cast-to-x” validator. Should be subclassed by any cast-test validator. Not to be used directly.

class IntValidator

Validates whether a field can be cast to an int type or not.

empty_ok=False:

Specify whether a field which is an empty string should be ignored.

class FloatValidator

Validates whether a field can be cast to an float type or not.

empty_ok=False:

Specify whether a field which is an empty string should be ignored.

class SetValidator

Validates whether a field is in the specified set of possible fields.

valid_set=[]:

List of valid possible fields

empty_ok=False:

Implicity adds the empty string to the specified set.

class UniqueValidator

Ensures that a given field is not repeated in any other column. Can optionally determine “uniqueness” with other fields in the row as well via unique_with.

unique_with=[]:

List of field names to make the primary field unique with.

class RegexValidator

Validates whether a field matches the given regex using re.match().

pattern=r'di^':

The regex pattern. Fails for all fields by default.

class EmptyValidator

Ensure that a field is always empty. Essentially the same as an empty SetValidator. This is used by default when a field has no validators.

class Ignore

Always passes validation. Used to explicity ignore a given column.

Built-in Input Types

Vladiate comes with the following input types:

class VladInput

Generic input. Should be subclassed by any custom inputs. Not to be used directly.

class LocalFile

Read from a file local to the filesystem.

filename:

Path to a local CSV file.

class S3File

Read from a file in S3. Uses the boto library. Optionally can specify either a full path, or a bucket/key pair.

path=None:

A full S3 filepath (e.g., s3://foo.bar/path/to/file.csv)

bucket=None:

S3 bucket. Must be specified with a key.

key=None:

S3 key. Must be specified with a bucket.

class String

Read CSV from a string. Can take either an str or a StringIO.

:string_input=None

Regular Python string input.

:string_io=None

StringIO input.

Running Vlads Programatically

class Vlad

Initialize a Vlad programatically

source:

Required. Any VladInput.

validators={}:

List of validators. Optional, defaults to the class variable validators if set, otherwise uses EmptyValidator for all fields.

delimiter=',':

The delimiter used within your csv source. Optional, defaults to ,.

For example:

from vladiate import Vlad
from vladiate.inputs import LocalFile
Vlad(source=LocalFile('path/to/local/file.csv').validate()

Testing

To run the tests:

make test

To run the linter:

make lint

Command Line Arguments

Usage: vladiate [options] [VladClass [VladClass2 ... ]]

Options:
  -h, --help            show this help message and exit
  -f VLADFILE, --vladfile=VLADFILE
                        Python module file to import, e.g. '../other.py'.
                        Default: vladfile
  -l, --list            Show list of possible vladiate classes and exit
  -V, --version         show version number and exit
  -p PROCESSES, --processes=PROCESSES
                        attempt to use this number of processes, Default: 1

Authors

License

Open source MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vladiate-0.0.13.tar.gz (16.7 kB view details)

Uploaded Source

Built Distributions

vladiate-0.0.13-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

vladiate-0.0.13-py2-none-any.whl (20.2 kB view details)

Uploaded Python 2

File details

Details for the file vladiate-0.0.13.tar.gz.

File metadata

  • Download URL: vladiate-0.0.13.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for vladiate-0.0.13.tar.gz
Algorithm Hash digest
SHA256 43c6185f7961d727ca59385cd65fa440734ba0ed9eb58157252801b2a9ac011e
MD5 81621eb391e722f1b5f12e072bd1126d
BLAKE2b-256 e9bd5ed4c19e77f6c7fd84578f85d88df6840a10d465b11a3c146b0b1b756b8f

See more details on using hashes here.

Provenance

File details

Details for the file vladiate-0.0.13-py3-none-any.whl.

File metadata

File hashes

Hashes for vladiate-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 93c5a76ee4465f4be677848a95ec1802caba50a35ac24cb8810253cf45865cd5
MD5 cfe347bcbd0594dd0a5ce2f69f53bc81
BLAKE2b-256 b10c31a90bbac4fd68bf977c8b4af702146ea7da57ef8393008a16f655d84caf

See more details on using hashes here.

Provenance

File details

Details for the file vladiate-0.0.13-py2-none-any.whl.

File metadata

File hashes

Hashes for vladiate-0.0.13-py2-none-any.whl
Algorithm Hash digest
SHA256 9ab487d31aedb2bfcd3dd3aeca056e897c2239c67b994801a2db8ab9fc981c26
MD5 a2804020edc9fa53f7e66b35a969ad04
BLAKE2b-256 a34f3c15c61f0ea28bf0e7119c897ef96c669e607b167763f9d8f36955cfbc56

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page