Skip to main content

Model choosers for Wagtail admin

Project description

A plugin for Wagtail that provides a ModelChooserPanel and ModelChooserBlock for arbitrary models.

Installing

Install using pip:

pip install wagtail-modelchooser

Then add it to your INSTALLED_APPS:

INSTALLED_APPS = [
    # ...
    'wagtailmodelchooser',
    # ...
]

It works with Wagtail 2.2 and upwards. For older versions of Wagtail check previous versions of the package.

Quick start

To enable the chooser for your model, you must register the model. For simple cases, decorate your model with @register_model_chooser:

from django.db import models

from wagtailmodelchooser import register_model_chooser


@register_model_chooser
class Author(models.Model):
    name = models.CharField(max_length=255)

    def __str__(self):
        # The ``str()`` of your model will be used in the chooser
        return self.name

You can then use either ModelChooserPanel in an edit handler definition, or ModelChooserBlock in a StreamField definition:

from wagtail.wagtailcore.blocks import RichTextBlock
from wagtail.wagtailcore.fields import StreamField
from wagtail.wagtailcore.models import Page
from wagtail.wagtailadmin.edit_handlers import FieldPanel, StreamFieldPanel
from wagtailmodelchooser.blocks import ModelChooserBlock
from wagtailmodelchooser.edit_handlers import ModelChooserPanel

class Book(Page):
    name = models.CharField(max_length=255)
    author = models.ForeignKey(Author)

    content_panels = [
        FieldPanel('name'),
        ModelChooserPanel('author'),
    ]

class ContentPage(Page):
    body = StreamField([
        ('text', RichTextBlock()),
        ('author', ModelChooserBlock('books.Author')),
    ])

    content_panels = [
        StreamFieldPanel('body'),
    ]

Customisation options

If you want to customize the content or behaviour of the model chooser modal you have several options. These are illustrated through some examples below.

If you wanted to add an additional filter field to the popup, you might do that as follows:

from django.db import models

from wagtailmodelchooser import register_model_chooser, Chooser


class City(models.Model):
    name = models.CharField(max_length=255)
    capital = models.BooleanField()

    def __str__(self):
        # The ``str()`` of your model will be used in the chooser
        return self.name

@register_model_chooser
class CityChooser(Chooser):
    model = City
    modal_template = 'wagtailmodelchooser/city_modal.html'
    modal_results_template = \
        'wagtailmodelchooser/city_modal_results.html'

    def get_queryset(self, request):
        qs = super().get_queryset(request)
        if request.GET.get('capital'):
            qs = qs.filter(capital=request.GET.get('capital') == '0')

        return qs
{% extends 'wagtailmodelchooser/modal.html' %}

{% block search_fields %}
<input type="search" name="q" id="id_q" placeholder="Search..." autocomplete="off">
<input type="checkbox" name="capital">
{% endblock %}
{% extends 'wagtailmodelchooser/results.html' %}

{% block extra_table_headers %}
<th>Is Capital</th>
{% endblock %}

{% block extra_table_row_columns %}
<td>{{instance.capital}}</td>
{% endblock %}

You can also register hooks to modify the javascript behaviour of the model. See the add*Hook methods on window.wagtail.ui.ModelChooser.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

wagtail_modelchooser-2.13.0-py2.py3-none-any.whl (14.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file wagtail-modelchooser-2.13.0.linux-x86_64.tar.gz.

File metadata

  • Download URL: wagtail-modelchooser-2.13.0.linux-x86_64.tar.gz
  • Upload date:
  • Size: 17.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.5

File hashes

Hashes for wagtail-modelchooser-2.13.0.linux-x86_64.tar.gz
Algorithm Hash digest
SHA256 03e69021868adcb7af06af4e9942dac583f7bb9daae01305aa12f561480f34fb
MD5 0df76c970ef04ba67a805cdae81362f7
BLAKE2b-256 38071c16c65f560ffd4d4bafe4635ac999e19d43aa6ca77810cd87b191c162d7

See more details on using hashes here.

File details

Details for the file wagtail_modelchooser-2.13.0-py2.py3-none-any.whl.

File metadata

  • Download URL: wagtail_modelchooser-2.13.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 14.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.5

File hashes

Hashes for wagtail_modelchooser-2.13.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c6052b4d07e5b907181e7d1994e4d4cb44b5a1c93315818c989ef6e9a9c992d5
MD5 7004bb40b8b93cde282879dc11a04cf5
BLAKE2b-256 62718996b35a1cfc576031505460d3a6cd6f0d13891304ebe010599a40f9e052

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page